THE TEST FUNCTION CONJECTURE FOR PRO-p IWAHORI LOCAL
MODELS OF GENERAL LINEAR GROUPS AND GENERAL SYMPLECTIC
GROUPS

QIHANG LI

ABSTRACT. This paper is a continuation of [HLS]. Building on the enlarged local models of GL,
and GSpy, at I'1 (p)-level constructed in [HLS], and employing nearby cycles on these models, we
prove that the function 7% in the center of the I'1(p)-Hecke algebra, defined geometrically via
the semisimple trace, coincides with the function z;° obtained from semisimple local Langlands
parameters [FS] and the theory of the stable Bernstein center [Hail4]. This provides the first

verification of the generalized test function conjecture at I'1(p)-level, valid for all cocharacters p.
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1. INTRODUCTION

Integral models control many arithmetic properties of Shimura varieties. Fix a prime p and a
level structure K, at p. It is important to construct an integral model over Spec(Op), where F is
the completion of the reflex field at a finite place above p. When K, is an Iwahori (or more generally
a parahoric) subgroup in the sense of [BT], integral models are known for a large class of Shimura
varieties: for PEL type, see [RZ96]; for abelian type, see [KP, KPZ]|. One can also work in the p-
adic setting: the existence of canonical p-adic integral models, conjectured by Pappas—Rapoport, has
been established to varying degrees in [PR, D, DY, DHKZ]. Among the known cases, a prototypical
example is the Siegel modular stack Ag of principally polarized abelian schemes of dimension g over
Spec(Z,) with Iwahori level at p. This will be our motivating example for passing to deeper levels.

When K, is a pro-p Iwahori subgroup (the pro-unipotent radical of an Iwahori subgroup), we say
that the Shimura variety has I'1 (p)-level structure at p. In this setting, far fewer results are known;
see, for instance, work on certain unitary Shimura varieties [HRa, S| and on the Siegel case [HLS, S].
The Hilbert—Siegel case is studied in [Liu]. In [HLS], the 'y (p) analogue A; of Ay is constructed as
a modular stack using Oort—Tate theory [OT]. Geometric properties of .A; have been investigated
in [HLS, Mar].

Research of Q.L. partially supported by a Hauptman Summer Fellowship (2024), an Ann G. Wylie Dissertation
Fellowship (2025) at the University of Maryland, and NSF grants DMS-2200873 and DMS-1801352.
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To address the bad reduction of Ay, de Jong introduced a local model My in [dJ]. The scheme
M, defined in terms of linear algebra data, is projective over Spec(Z,) and is étale-locally isomor-
phic to Ap; hence it captures the same singularities. Nearby cycles on Ag can be related to those
on M via the local model diagram. For generalizations and applications in the parahoric case, see
the survey [PRS].

Using the theory of determinant line bundles [KM, Knud] and their distinguished sections [HLS,
Sec. 2], a local model M; for A; is constructed in [HLS] with properties parallel to those of M.
In particular, M; is étale-locally isomorphic to A;, and there exists a local model diagram relating
nearby cycles on A; and Mj. To relate pushforwards of nearby cycles, [HLS, Sec.5] introduces
rigidified local models by trivializing determinant line bundles and taking (p—1)-st roots of their
distinguished sections (note that our notation differs from [HLS], where (=) is used in place of
(=)"):

MY — MY — M.
The morphism M{ — My is smooth-locally isomorphic to A; — Ag, allowing us to compare, for a
prime ¢ # p,
T R4 (Q)  and  mRYu(Qp),

for m: Ay — Ag or m: M} — M. Thus, to study pushforwards of nearby cycles, it suffices to work
with M} — M — M.

There are “enlarged” versions of My [HN, HLS|] whose generic fibers carry interesting sheaves
beyond Q,. These enlarged local models My ,, are indexed by m = (m™, m~) with integers m~ <
m*. For m = (1,0) one recovers the usual local model M. Variants exist for both G = GL,, and
G = GSp,,,, denoted Mo, . Unless stated otherwise, we focus on G = GL,, in this introduction,
noting that the symplectic case has analogous statements.

The generic (resp. special) fiber of Mg ;. ¢ embeds naturally into the affine Grassmannian Grg g,
(resp. the affine flag variety Flg r,) via the lattice (resp. lattice-chain) description [Go, Zhul6]. Thus
one may view Mo, ¢ as a truncated deformation interpolating between Flgr, and Grgg,. A
loop—group uniformization in the sense of [PZ] shows that these fiberwise embeddings can be made
integrally [HLS, Sec.9.5].

There are also enlarged versions of the rigidified models, yielding

t t
Ml,m,G — M()A,m,G ” MO,m,G'

Here Mé,m,G can be viewed as a truncated deformation from the enhanced affine flag variety
Flf;’mp—which parametrizes lattice chains together with trivializations of consecutive cokernels—to
a T-torsor (with T" the diagonal torus of G) over Grg g, Using the embedding of the special fiber,
I —equivariant nearby cycles on M&mG produce elements of the I'y(p) Hecke algebra H(G,IT).
One of the main results of this paper, made precise below, is that nearby cycles arising from natural
constructions yield central elements of H(G, "), and that the action of these central elements on
irreducible smooth representations of G(F,((t))) can be described explicitly. This was established
for minuscule cocharacters in [HLS]; here we generalize it to arbitrary cocharacters.

It is worth emphasizing a key difference from the Iwahori case: at present there is no known
loop—group uniformization for Mé,m,G' The obstruction is that natural candidates produce generic
fibers isomorphic to Grg g, itself, rather than to a T-torsor over Grg,q,, which is what the I';(p)
rigidification demands.

1.1. Formulation of the main result. In this paper, we are going to prove a case of the test
function conjecture in [Hail4].

Let G be either GL,, or GSp,, over Spec(Z); unless stated otherwise, we focus on G' = GL,,. Let
T denote the diagonal torus of G and B the “upper” Borel subgroup. For a scheme over the ring of
p-adic integers Z,,, write 1 (resp. s) for its generic (resp. special) fiber. Fix an arbitrary uniformizer
wp € Zyp. We use this w,, in the construction of Mg, ¢ (Definition 4.1). When clear from context,
we write G for G(F,((t)). For a precise setup, see §2.

Recall the rigidified local models

t ™ t
Ml,m,G MO,m,G ? MO,m,Ga
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which are schemes over Spec(Z,), where m = (m™,m™) is the truncation index as before. The
scheme Mé,m,G is a T-torsor over Mg, ¢ parametrizing consecutive determinant line bundles
(Definition 6.1). The map M7 ,, 5 — Mg, 5 parametrizes (p—1)-st roots of distinguished sections
of these determinant line bundles (Definition 8.1); it is a T'(IF,)-ramified cover and is finite étale on
the generic fiber.

Fix a dominant cocharacter p € X, (T)". Let A, (§8) be the usual normalized intersection
complex on Grg g, attached to the Schubert stratification; this sheaf plays a central role in the
geometric Satake equivalence [Lu, Gi, BD, MV, Ril4, RZ15, Zhul6]. For m sufficiently large (as we
shall always assume), the embedding Mo m,qn — Grg,g, (Lemma 4.4) allows us to view A, as a
perverse sheaf on My ., ¢, which we continue to denote by A,,.

Write B} for the pullback of A, along the T-torsor Mg ., o — Mo m,g- The analogue of A, on
MG, ¢ is then

Aj;m = et (B:)
Define

TZ,Sm : Mé,m,G(FP) - @Ev T — (_1)d“ Tr* ((I) | (R\IIMB,m,G (A:‘r»m)f)) ’

where Tr*® denotes the semisimple trace in the sense of Rapoport (see [HN, Sec.3.1] and [PZ,
Sec.10.4]), d,, = dim(O,,) is the dimension of the Schubert stratum attached to p, R¥ is the nearby
cycle functor (§9.2), and ® € Wy, (the Weil group of Q,) is any geometric Frobenius element. Let
I C G(F,[t]) be the Iwahori subgroup corresponding to B, and let I be its pro-unipotent radical.
One checks that RU,  (Af ) is IT-equivariant (indeed, twisted I-equivariant in a suitable

sense; see Lemma 10.1). Via the embedding Mg, &, = Fltaﬁp (Lemma 6.2), we may view 7., as
an element of the I'y(p) Hecke algebra H(G(F,((t)), IT) (see §9.1), and we keep the same notation
for this function.

To describe the action of 7%, on irreducible smooth representations of G(F,((t)) with coeffi-
cients in Q,, we introduce a central function z;*. Let (ru, V) be the p-highest weight algebraic
representation of LG = G x Wk, (+) (with the dual group G defined over Q, and W, (1) the Weil

group of Fy,((t))). In our split setting, W, (1) acts trivially on V,,, so V,, is the usual highest-weight

G-module; see [Hail4, Sec.6.1]. There is an associated distribution Z, € 3(G) (see [HLS, Sec. 13|
and §9.3 for details), where 3(G) denotes the Bernstein center of G(F,(t))). For an irreducible
smooth representation 7, let v : W, (1) — L@ be its semisimple Langlands parameter [FS], and
set

ru(or(Zr, (¢
Zu(ﬂ-) _ Tl“(’l“u(gﬁﬁ((bb)) ‘ Vﬂ;(‘f’ (Zr, ( ))))>’

where Zg (1) is the inertia subgroup of F,((t)) and P e WE, (t) 18 a geometric Frobenius element.
This distribution yields an element in the center Z(G,I") of H(G, I*). (Alternatively, z5° can be
constructed using local class field theory and depth-zero type theory [BK, Hail2]—without invoking
[F'S]—but the construction above works uniformly at any level.) Up to a scalar, z,° is the test
function: it is the expected function (cf. [Hail4, Conjecture 6.1.1]) inserted into the point-counting
formula in the Langlands—Kottwitz method for computing the semisimple Lefschetz number.

The following theorem generalizes [HR21, Main Theorem] to the I'y (p)-level and can be regarded

as a nearby-cycle construction of the test function.

Theorem 1.1 (Test function conjecture for I'1(p) local models). For any m, the function 1%,
belongs to the center of H(G(F,(t)),I1), and

s, = |IT(E) o (250 ) in H(G(F,(t), I),

H,m Himt)

where |T(Fp)| is the cardinality of T(Fp), pm+y == p— (m*,...,m"%), and t is the parameter of
F(t). The operator

as  H(G, ITT) — H(G, TT), ar(f)(z) = f((diag(t, ... ,t))_lz) )

T T ss
Moreover, when m™ is divisible by p — 1 we have /™ (zs“’ ) = 2%%  and hence

Hmty /) — B2
Taom = |T(Fp)] 2.
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The factor |T'(FF,)| in the theorem comes from our normalization and may be ignored (see Exam-
ple 1.4).

In the Iwahori case, the identity at"ﬁ(zss ) = z;,° holds for every m™. Consequently, T = 2

Hm+) K
for all m, in alignment with [HR21, Main Theorem]|. This implies that 7%, does not depend on
m; this is immediate from the fact that the sheaf A, itself is independent of m (the natural closed
embeddings for different truncation indices yield a single uniform sheaf).

In contrast, at T'y(p)-level the operator oy is genuinely needed. The sheaf Af  on Mg . o does
depend on the truncation index m: although natural embeddings between the schemes M ., o
exist, there need not be an embedding M} o < M} .,  unless m* —m/" is divisible by p — 1
(for GSp,, this also forces m™ —m/~ to be divisible by p—1). For a fixed p, varying m can therefore
produce different functions—indeed, at most p — 1 of them (see Example 1.4 and §8.2).

The previous theorem extends to Fg-points. Before explaining the extension, we outline the
strategy of the proof of Theorem 1.1. The argument proceeds componentwise. Let T'(F,)Y be the
set of characters x : T(F,) — @ZX By [Hail2|, any z € Z(G,I") admits a decomposition (sum or
average, depending on normalization)

=Y

XET (Fp)V

where 2, € Z(G, 1, x) lies in the center of the xy ~!-equivariant Hecke algebra H(G, I, x) C H(G,IT)
of bi-x~!-equivariant functions (here we view y as a character of I — I/IT = T(F,); see §9.1).
Since z3° € Z(G, I'), we write z;° for its xy-component (in the “average” sense).
Analogously (see [HLS, Sec.14] and also Lemma 8.10 for a simpler description), there is a de-
composition on the sheaf side
'A;J;,m = @ A;J;,m,xv

XET(Fp)V
where each “A;r,m,x is x—monodromic [Ve, LY, Gou, Zhu25, HLS], i.e. equivariant with respect to

the rank-one multiplicative local system F, [Lau]. The complexes

R\IIMS‘WL‘G(A;WW)

are again y—monodromic and carry a twisted I—equivariance (distinct from the usual left I-action on
the enhanced affine flag variety), which is used to deduce bi—x~'—equivariance. Taking semisimple
traces yields functions

T GH(G,I,X),

Hom, X

SSs _ SSs
Tum = Z Tym,x

XET(Fp)Y

and hence

A key input from [HLS] is that, for any m and x, the function 7;;%, | is central in H(G, I, X), as
expected.
The main step in the proof of Theorem 1.1 is to show that, when m™ is divisible by p — 1,

ss __ .88
Toomx = ox for all x.

Following the philosophy of [HR21], we verify this by comparing constant terms:

7 (Taima) = €7 () »

where
g Z(G,1,x) = Z(T,T(Ft]), x)

is the (injective) constant—term morphism [Hail2, Sec.5.4], given by

G(f)m) = o4*(m)- f(mu) du,
U(Fyp ()
with U the unipotent radical of B.
Up to normalization, the constant—term morphism cg can be realized geometrically via hyperbolic
localization [Ril9, HR20, HR21] for a suitably twisted G,,~action on M, . (the usual left action
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on FltG,]Fp has no fixed points); see §7 for definitions. The following theorem is an analogue of [HR21,
Proposition 3.4, Proposition 4.7] at the I'; (p)-level. In what follows, Mg 7 (resp. Mo m, ) denotes
the analogue of My ,,, ¢ for T (resp. B); it is described in terms of lattices so that the corresponding
T—torsor is defined naturally, and (—)* denotes the associated T-torsor. In the theorem below, the
top rows of the diagrams arise functorially from the natural maps T < B — (. See §4-8§7 for
precise definitions.

Theorem 1.2. Over Spec(Q,), there is a natural commutative diagram

t t t
— —
Mo.m.T.m Mo.m. By Mo m.cn

MO gt Mbt ptt Mt
0,m,G,n 0,m,G,n 0,m,G,n
in which all vertical maps are isomorphisms. Here (—)° denotes the G,,-fived locus and (=)t the
attractor.
Similarly, over Spec(F,), there is a natural commutative diagram

t t
— —_—>
MO,m,T,s MO,m B,s MO,m,G,s

t,+ t,+
t,0 q t,+ P t
— _
M07m,G7s MO,TmG,s MO,m,G,s

in which all vertical maps are isomorphisms.

Unlike the Iwahori case [HR21, Proposition 4.7], in the I'; (p) setting the vertical maps are iso-
morphisms (rather than merely open-and-closed immersions), even on the special fiber. This makes
the T'1(p) case slightly better—though for applications the distinction is immaterial. Up to nor-
malization, the constant—term morphism c$ can be realized (Lemma 10.9), via the sheaf-function

dictionary, as

&~ ("),

and this functor commutes with nearby cycles on G,,—equivariant sheaves [Ril9], such as A;m’x.
Consequently, all computations may be carried out on MB,mVT, whose reduced structure is compar-
atively simple (see Example 1.4).

Now we explain how to extend Theorem 1.1 to F,—points, where ¢ = p” with » > 1. Let
I, C G(F,[t]) be the corresponding Iwahori subgroup and I, its pro-unipotent radical. There are
two natural constructions of nearby cycles in this setting. The need for two constructions stems

from the fact that, although in the Iwahori case the double coset spaces agree

NGE()/T = LAGF(t)/1r,

this compatibility fails at I';(p) level:
IN\G(E(1)/ I # LNGE(1)/ L

First construction. For any x € T(F,)", define

_ "
it Moo — Qi a (ORI (0] (R (AL n)e)).
Set 735, == ZXeT(Fp)V 7% - Note that this sum only ranges over T'(F,)", so from the point of

view of T'(F,)" (the set of characters of T'(F,)) some components are missing.
Second construction. Define a T'(F,)-ramified cover

t,

7w ./\/ll’r

m

t
,G MO,m,G
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as the space of (¢ — 1)—st roots of the distinguished sections (for » = 1 this is 7). Set
AI”;& =t (B:) on M(J)im’(@p.

After base change, we obtain on M(J{ mQ, & decomposition

+,r _ +,r
A= D Al

X' €T (Fq)*
where each A:; v s X'~monodromic. Define
: CAqt a d +,
T Mom,a(Fg) — Qg z— (=)™ Tr™ (qﬂ | (R\I’Mé,m,c (A#,rrn,x’)f)) ’

Then set 7,5 := ZX,ET(Fq)V T;:iix/.
Spectral side. Replacing IF,(#)) by F,((¢)) in the construction of 2;;* yields a central function 2,7

Both constructions produce central functions, and their relationship is summarized in the follow-
ing theorem.

Theorem 1.3. For any m, the function 7,5 € H(G(F((t)), 1) is central, and

"
T;:fs = |T(F,)| /™ (szfer)vT)’ where fim+y = p1 — (m+, coo,m).

Moreover, for any x € T(F,)* and x' := x o Nr,/r, where Ny jr, is the usual norm map, we have

ss 7,88

TM’”’LJ‘,X - ‘u,m,x"

and 755, . € H(G(Fq((t), I,7) is central.

pom,r

Moreover, if 7/ | r, then the sheaf A;’[,’;{ is naturally a direct summand of Afy , and the two
sheaves induce the same function on F,~—points (whereas on F,r—points they may differ, as noted
above). If one wishes to recover z;;°. uniformly for all r, it is natural to consider the directed limit
of the system {Afy }, as r varies.

We end this subsection with an example that exhibits all the new phenomena at the T';(p)-level,
except for the extension to F,-points.

Example 1.4. In this example we treat the simplest case. Assume G =T = G,,, take p to be the
trivial cocharacter, and work with F,-points. We have

I =TF,[t]*, It =1+1tF,[t],
and
T(Fp)| =p—1.
The reader may ignore this factor of p — 1, which arises from our normalization convention that z;

is the average rather than the sum of the z;;* ’s. In this situation

88 __
2z, =

88

17+ and Zpy = €x

1

where e, is the idempotent supported on I which, on I, is the function x~*, viewed as a character

via the quotient
I/It ~ T(F,) =F}.
First, consider the truncation index m = (0, —1). Then the reduced scheme (Mg .G )red (see Def-
inition 4.8 and Lemma 10.6 for details) consists of two disjoint copies of Spec(Z,). One component
corresponds to the middle term in

Zplt] C Zyplt] C t Ly [t],
and the other to the middle term in
Zplt] C ™ Z[t] C 7 Z,[H).

We denote these components by Spec(Zy)o and Spec(Zy,)_1, respectively. In this case A, is simply
the rank-one constant sheaf Q, on Spec(Q,)o, the generic fiber of Spec(Z,)o.
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The reduced structure (Mé,m,G)md of the Tz -torsor M&mG is the disjoint union of two copies
of Tz, , one lying over each copy of Spec(Z,). We denote them by To,z, and T 1,2, We trivialize
the T-torsor so that, via the embedding (Lemma 6.2)

MB,m,G,s — Flé‘,]Fpa
the points 1 € Ty z, (F,) and 1 € Ty z,(F,) map to
U € Fll g (F,) = F(6)*/(1 + tFf]) and I € Pz (F,),
respectively.

For any character x : T(F,) = F} — @Z, the sheaf AT

Lmoy €quals

Fxa, onToq,,

the generic fiber of T z,, where F, g, is the rank-one local system defined by the connected finite

étale cover
arsaP !

Ty T
with Galois group T'(F,) and character x. This is because over Tpgq,, the morphism Mﬁ,m,G —

P P

p—1
MG . ¢ can be identified with T, Lo Ty, (see Lemma 10.7 for details). It is also known
([HLS, Lemma 14.1.1]) that
RYT, (Fr.0,) = FxF,

the [F,-analogue defined similarly. Taking the (usual or semisimple) Frobenius trace on F, r, yields

the function e, ([HLS, Lemma 14.4.1]). Hence 7%,  is the function e, and therefore
Tom=@—-D1 =(@—1)z".

Moreover, if one works with the truncation index n = (n*,n~) where n™ > 0 and n™ is divisible by

p — 1 (with the same p), then over Ty g, the morphism Mf o — M{ . o can be identified with

the composite

arsaP~1 a—aw "
T, Q, — Tq,
again see Lemma 10.7). One checks that we still obtain F, on T @, and thus the same equality.
x>Qp ,Qp
Now consider the truncation index m’ = (1,0). By a similar analysis, (M§ ., )red is the disjoint

union of two copies of 77, which we denote by Ty 7z, and T 7,. For any character x : T(F,) — @Z ,
the sheaf A:)m,7x is Fy,0, ®Ky on Ty g,, where K, is the rank-one local system on Spec(Q,,) obtained
by restricting Fy g, to the point w, € T(Qp). This is because now over Tpq,, the morphism
M g — MG o can be identified with the composite

arsaP—1 a—rawy

TQP Qp TQP .
Concretely, K, corresponds to the character

B: Gal(@p/@p) — Gal(@p <w511> /Qp) = F; L) @Z

The inertia group Iy, C Gal(Q,/Q,) acts trivially on K, if and only if x is trivial; in that case

Ky = Q, on Spec(Q,). Consequently, the semisimple trace
ss 0, x#1,

Tr**(® | RVz, (Ky)s) =
1, x=1.

Putting this together, we obtain

a5 {0, X# 1, .5

Thom/x = L x=1 hence T =11 # @ =D+ = (p—1)2;".
I =4

As one can see, for the same p, different truncation indices m and m’ give different functions.
For the cocharacter u’ : = — =~ and the truncation index m/, a similar computation shows that

88 __ Ss J—
(p*l) Z:U'/ = Tul,m/ = 1It*1]7
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and therefore
Toom = 11 = (p—1) at(zZ?) )
In particular, when y is trivial,

SS

S SS
Tim,x

= Oy (Zuf,x) = at(lltfll) == 1[ = ZI%X'
Thus, although «; is unnecessary in the Iwahori case, it plays an essential role at the T'; (p)-level.

1.2. Overview. This paper is a continuation of [HLS], but it is intended to be self-contained. The
essential input we take from [HLS] is the centrality of each yx-monodromic component. Apart
from this, most results from [HLS] that we use are revisited and, where convenient, reproved
here—sometimes with slight variations.

In §2, we set up the notation used throughout the paper. From this point on, we assume G = GL,,.
In §3, we review lattice descriptions of the affine Grassmannian and the (enhanced) affine flag
variety. Sections §4 and §5 construct local models at Iwahori level and establish results on hyperbolic
localization for these schemes. Sections §6 and §7 construct local models at T’y (p)-level and analyze
hyperbolic localization there. In §8 and §9, we construct central elements in the I'; (p) Hecke algebra
and its variants. In §10, we prove that the central elements constructed by different methods
coincide. Section §11 extends the preceding results to a general finite field F,. Finally, in §12, we
introduce the additional ingredients needed to treat G = GSp,, and indicate the corresponding
generalizations.

1.3. Acknowledgements. The author is grateful to his advisor, Thomas J. Haines, for proposing
this project and for many helpful discussions. He also thanks Benoit Stroh for valuable conversations
during their earlier collaboration [HLS]. This work was partially supported by a Hauptman Summer
Fellowship (2024) at the University of Maryland; the author warmly thanks the donor, Carol Fuller-
ton, for her generous support. Additional support was provided by an Ann G. Wylie Dissertation
Fellowship (2025) at the University of Maryland, for which the author thanks the Graduate School
at the University of Maryland.

2. NOTATION

In this section, we fix the notation and conventions that will be used throughout the paper.

Fix ¢ # p two prime numbers throughout this paper. Let G be either GL,, or GSp,, over
Spec(Z). For GL,,, we view G as the automorphism group scheme of Z™, where we denote by e; the
element whose i-th coordinate is 1 and all other coordinates are 0. For GSpy,, we view G as the
automorphism group scheme of Z29 preserving the standard symplectic form up to a unit, where
the standard symplectic form (-, -) on Z?9 is given by the matrix

(50

and J denotes the antidiagonal identity matrix of size g x g.

Let B/Spec(Z) be the “upper” Borel subgroup and T'/Spec(Z) the diagonal torus of G. When
we work over a valuation field F' (e.g. Qp, Fp(2), or Q,((t)) with valuation ring Op, where the
Bruhat—Tits theory [BT] applies, we use the following conventions: by a hyperspecial subgroup, we
always mean G(Op); by an Iwahori subgroup, we mean the preimage of B(F/Op) C G(F/OF)
under the reduction map G(F) — G(F/Op); and by the T';(p) (or pro-p) Iwahori subgroup, we
mean the preimage of U(F/Op) C G(F/OF) under the same reduction map, where U/Spec(Z) C B
is the unipotent radical of B.

Occasionally, by “hyperspecial” (resp. “Iwahori”) subgroup we also refer to the affine smooth con-
nected Op-model of G whose set of Op-valued points is the hyperspecial (resp. Iwahori) subgroup
defined above; this will be clear from the context.

When F is a local field, we fix a separable closure F of F and denote by Wg the Weil group of
F, viewed as a subgroup of the Galois group Gal(F/F). The Artin map

Art;,l: Wrp — F*
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is normalized so that geometric Frobenius elements are sent to uniformizers. The inertia group of
F is denoted by Jr C Gal(F/F)

Over a general field k, the affine Grassmannian Grg i (rvesp. affine flag variety Flg j) attached
to G is defined to be the ind-scheme representing the fpqc-sheafification of the functor

{ k-algebra R+— G(R(t)/G(R[t])} (resp. {k-algebra R — G(R(t))/Z(R[t])}).

where Z(R[t]) € G(R[t]) is the preimage of B(R) C G(R) under the reduction map G(R[t]) —
G(R)).

When the base field k is clear from the context (in particular, when we work over the generic
point Spec(Q,) or the special point Spec(F,) of Spec(Z,)), we simply write Gre (resp. Flg) for
Grg,; (resp. Flg ;). The same convention applies to T and B: we set Grp = Flp and Grg = Flp,
defined as the fpqc-sheafification of the functor

{ k-algebra R+— T(R(t)/T(R[t])} (resp. { k-algebra R+— B(R(t))/B(R[t]) })-

We fix a uniformizer w, € Z, throughout this paper. For a scheme X defined over Spec(Z,),
we denote by X;,/Spec(Qy) its generic fiber, by X, /Spec(F,) its special fiber, by X;/Spec(Q,) its
geometric generic fiber (using the separable closure fixed above), and by X;/Spec(F,) its geometric
special fiber.

For each ring k € {Z,, Z,, Qp,@p,FP,FpL the map (p — 1) : Tx — Tx, t — tP~1 is a connected
finite étale cover with covering group the (p — 1)-st roots of the identity of T(Z,), which we identify
with T'(F,) via the Teichmiiller lifting throughout the paper. We denote by T'(F,)" the set of

characters of T'(F,) valued in @; .

3. AFFINE GRASSMANNIAN AND (ENHANCED) AFFINE FLAG VARIETY

Starting from this section, we assume that G = GLj, and we only deal with GSp,, in the last
section.

Let R be any ring. By an R[t]-lattice in R((t))", we mean one of the following equivalent notions
(see, e.g., [Go, Definition 3.1], [Zhul6, Definition 1.1.1], and [Hai25+]).

Definition 3.1. An R[t]-lattice £ C R((t)" is an R[t]-submodule such that tN R[t]" C £ C
t=NR[t]" for some integer N > 0, and that satisfies the following equivalent conditions:

(i) the R-module ¢t~V R[t]"/£ is R-projective;

(ii) the R[¢J-module £ is R[t]-projective.
This definition extends to any scheme S by gluing along affine open subsets U C S; in this case we
call such an object an Og[t]-lattice.

Remark 3.2. For N’ > N > 0 in Definition 3.1, using the natural sequence
VR[] /& — t V' R[]"/& — t N R[t]"/t N R[t]",
whose last term is R-projective, we see that the R-module t~~ R[[t]"/£ is projective if and only
if t=N 'R[[t]]” /£ is projective. Note that in Definition 3.1 we may equivalently replace N by two
integers m* > m~ such that t™ R[t]" C £ C t™ R[t]™.
There is a standard lattice
A())R = R[[t]]n C R((t))n
Definition 3.1 provides an equivalent description of Grg  as a functor.

Lemma 3.3. Let R be any k-algebra. Then Grg (R) identifies functorially with the set of R[t]-
lattices in R(t)™ via the map g € G(R(t))) — gAo,r-

Proof. See [Zhul6, Definition 1.1.2, (1.2.1), and Proposition 1.3.6]. Note that GL,-torsors can be
naturally identified with rank-n vector bundles ([Zhul6, §0.3.3]). The main point is that any R[t]-
lattice £ C R((t))™ is étale locally on Spec(R) free ([Zhul6, Lemma 1.3.7]), and even Zariski locally
on Spec(R) free ([Hai25+, Lemma 2.3.8]). Via the map in the lemma, the group G(R((t)) acts
transitively on the set of free R[t]-lattices in R((¢))™, with stabilizer G(R[t]). O
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A t-periodic complete R[t]-lattice chain L4 = (- C £_1 C £y C £1 C ---) is a sequence of
R[[t]-lattices such that £;/£; 1 is locally free of rank 1 and £;,,, = t~1£; for all i € Z. There is a
standard ¢-periodic complete R[t]-lattice chain

Air = (E'R[)" @ R
The notion of ¢-periodic complete R[t]-lattice chains gives an equivalent description of Flg ; as a

functor.

Lemma 3.4. Let R be any k-algebra. Then Flg 1 (R) identifies functorially with the set of t-periodic
complete R[[t]-lattice chains in R(t)™ via the map g € G(R(t)) — g(Ae.r).
Proof. A t-periodic complete R[t]-lattice chain (--- C £4 C £y C £; C ---) is determined by
€oC L C--CL, =t18. Etale locally on Spec(R), we may assume that all £; and £,/£,_1
are free. We then obtain a full flag

Lo CL1/LC - CLu/Lo=1t"125/L0

in t71€9/Lp. Since G(R) acts transitively on the set of full flags in R™ with stabilizer B(R),
Lemma 3.3 implies the claim. U

Remark 3.5. In [HR21, §4], the affine flag variety Flg s is defined as the fpqc-sheafification of
the functor { k-algebra R — G(R(t))/Z(R[t]) }, where Z/Spec(k[t]) is the Iwahori group scheme
corresponding to B. This agrees with our definition, since for any k-algebra R, Z(R[t]) C G(R[t])
is the preimage of B(R) C G(R) under the reduction map G(R[t]) — G(R) (for k itself, this follows
from Bruhat-Tits theory [BT]). For G = GL,, this is proved in [Hai05, §3.2]; the key point is
that the automorphism group scheme Aut(A, xf¢) is smooth over Spec(k[t]), and hence equals the
Iwahori group scheme. For G = GSp,,, smoothness is proved in [HLS, Proposition 6.2.4] (only the
special fiber is needed).

Since we will later work with objects at the 'y (p)-level, we introduce the following definition of
the enhanced affine flag variety.

Definition 3.6. Let Fltcvk denote the T-torsor over Flg  such that, for any k-algebra R, its k-
valued points parametrize isomorphisms

dit £/L8i_1 — R, 1<i<n.
There is a standard R-valued point
AL g € Flg . (R)
whose underlying lattice chain is the standard chain (Ae r), and whose trivializations are given by
¢i: t T Rt]/R[t] =% R[t]/tR[] =2 R.

Lemma 3.7. Let R be any k-algebra. Then Flg i identifies functorially with the R-valued points
of the fpqc-sheafification of the functor { k-algebra R — G(R(t))/U(R[t]) }, where U(R][t]) is the
preimage of U(R) C G(R) under the reduction map G(R[t]) — G(R). This identification is given
by g € G(R(t)) = g(Aq g)-

Proof. Consider the set of full flags in R™ equipped with trivializations of the consecutive quotients.

Then G(R) acts transitively on this set with stabilizer U(R). The rest of the argument follows as

in the proof of Lemma 3.4. (|
4. TRUNCATED DEFORMATIONS FOR THE IWAHORI LEVEL

As mentioned in §3, unless otherwise specified, G = GL,,.
As in [HLS, Sec. 6.1], we define

Vilt] = (t +wp) ' Zp[t) @ Z, 1]
as a Zy[t]-submodule of

Vi=Zylt t ™1 (t+wy) Tt =2 @ Lyttt wy) Y.
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We recall the definition of the truncated deformations for the Iwahori level in [HN, Definition 2] and
[HLS, Definition 7.1.1]. The truncation index is given by m = (m™*,m~) where m* > m™ are two
integers.

4.1. The case of G.

Definition 4.1. Let Mg ,, ¢ denote the moduli space which associates to any scheme S over
Spec(Z,) the set of chains (Wy C Wy C -+ C W,,) of Og|t]-submodules of Oglt,t=1, (t + w,) "
fitting into a commutative diagram with injective morphisms

t"m Voltlog —=t™ Vi[tjog — - ——=t™ V,[tlo

| | |

s

WO Wl Wn
m+ ’f”ﬂ,+ ’ITL+
t Vo[t]os —1 Vl[t]os —_ . —— V,L[t]os

where

. Wi/tm+Vl- [tlos C t™ Viltlos /tm+Vi [t]og is locally a direct factor as an Og-module and
its Og-rank is independent of i, and
o W, = (t + wp>_1W0.

Remark 4.2. Using the natural sequence
Wi/t Viltlos — t™ Viltlos /t™ Viltlog — ™ Viltlos /Wi,
whose middle term is Og-projective, we see that
Wi/t Viltlos C 1™ Viltlog /™ Vilt]os
is locally a direct factor as an Og-module if and only if t™ V;[t]o,/W; is Og-projective.

The moduli space Mg . ¢ is shown to be representable by a projective scheme over Spec(Zy)
in [HN, Definition 1, 2]. The scheme Mg, ¢ serves as a (truncated) deformation of the affine
Grassmannian Grg g, from the affine flag variety Flg r,, which is justified by the following lemmas.
We use the equivalent definition of Grg (resp. Flg) given in Lemma 3.3 (resp. Lemma 3.4).

Over the generic point Spec(Q),,), a chain Wy, C Wy C --- C W,,) as in Definition 4.1 is completely
determined by W, as proved in the following lemma.

Lemma 4.3. Over the generic point Q,, the morphism

Wi_1 N Wi
tm*V,;_1[tog tm*V; [t og

18 an tsomorphism.

Proof. 1t suffices to show that

Wo Wi,
tm* Vo[t og - tm*V, [tos
is an isomorphism. Multiplication by (¢ 4+ w,,) induces an isomorphism on W,/ ™V, [tlog since wy,
is invertible in @, and
(t+wp) ' Os[t] N Os[t] = Os]t]
inside Oglt, t71, (t +w,) 1. a

Lemma 4.4. There exists a canonical closed embedding taking the generic fiber Mo m.c.n of Mom.c
into Grg.
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Proof. The morphism is given by
Wo CTWy C - CW,) — W,

where W is the unique lattice in Og((¢))™ such that

T Os[" € W, c t™ Og[t]™ and  W,/t™ Os[t]™ = Wo/Vo[tos.,
where, for the second equality, we used the identification

" Os[i]" /t™ OsIH" =t Voltlos /" Voltlos-

By Lemma 4.3 and Definition 3.1(ii), this is an embedding. It identifies Mg ¢, with the image

Grg,m(R) = { R[[t]-lattices £ C R((t)" | tm+R[[t]]" cect™ R[]},

which is a closed subscheme of Grg by [Zhul6, Theorem 1.1.3] (this scheme may be used to define
the ind-scheme structure on Grg). O

Remark 4.5. For convenience, throughout this paper, when the embedding is canonical, we write
it as an inclusion. For example, we use Mo, g,y C Grg to denote the canonical embedding in
Lemma 4.4.

Lemma 4.6. There exists a canonical closed embedding taking the special fiber Mo m.c.s of Mo.m.c
into Flg.
Proof. The map is
WoCWy C--CW,)— WiCcW,C---CW,)),
where W is the unique lattice in Og((t))™ such that
tmOs[" € Wi Ct™ Ogt]” and W!/A™ Aios = Wi/Viltlos,
using the identification
" A os /™ Aios =t Viltlos /t™ Viltlos.

By Definition 3.1(ii), this is an embedding. It is closed since Mg . q,s is proper ([HN]) and Flg
is ind-proper ([Ril6, Theorem A]); we use that any proper monomorphism is a closed embedding
[StaPro, Tag 04XV]. O

Remark 4.7. Moreover, one can show that there exists a closed embedding integrally Mg, ¢ C
Grz,u,, where the target is the specialization at wj, of the Pappas-Zhu Grassmannian [PZ] attached
to a smooth affine group scheme T over the affine line Spec(Z,[u]). This fact will not be used in
this paper; see [HLS, Sec. 9.5] for details.

4.2. The case of T'. Using the definition of My ,,, g1, we define the truncated deformations in the
case of T as a direct product.

Definition 4.8. Let Mg ,, r denote the direct product of n copies of Mg, .cr,. For any scheme
S over Spec(Zy), the S-valued points of Mg ., v are given by n-tuples (U,Us, - ,U,) such that

o t™ Oglt] CU; C t™ Og]t], and

o U;/t™ Oglt] C t™ Oglt]/t™ Oglt] is locally a direct factor as an Og-module.
By taking W; := (t +wp) U & - & (t +wp) U ®Uis1 & - - B U, we can embed Mo, into
Mo.m,c. As both sides are proper, this is a closed embedding by [StaPro, Tag 04XV].

The scheme My ., 7 also serves as a truncated deformation.

Lemma 4.9. There exists a canonical closed embedding taking the generic fiber Moy, 1.y of Mom, T
into Grr. The embeddings Mo m 1y C Grr, Momr C Mom.g, Mom,gn C Grg and Grr C Grg
(induced from T C G) form a Cartesian diagram

M(),Tme —_— GI‘T

L

MO,m,G,n EE—— Grg.
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Proof. The affine Grassmannian Grr is, by definition, also a direct product of n copies of Grgr, -
The existence of the embedding is a direct consequence of Lemma 4.4 applied to GL;. For a =
(a;); € T(R(t)), we have
alop = a1 R[t] ® -+ ® an R[],

so the Cartesian property follows. O
Lemma 4.10. There exists a canonical closed embedding taking the special fiber Mo, 1,5 of Mom,T
into Flp = Grp. The embeddings Mo m1s C Flp, Momr C Mom,c, Mom.as C Flg and
Flp C Flg form a Cartesian diagram

Mo m,1,s — Flp

L

Mo m,a,s — Flg.
Proof. Since Flp = Grp, the definition of this closed embedding is the same as in Lemma 4.9. For
a = (a;); € T(R(t)), we have
alhir =t R[] ® - @t 'a;R[t] ® ai1 R[t] ® - - - © an R[t],
so the Cartesian property follows. O

4.3. The case of B. Now we give the analogue of M ,,, ¢ for B, whose definition is more subtle.

Remark 4.11. Throughout this paper, when it is clear from the context, for any ring R, we identify
R" with the subset of Rb2 (b1 < by) whose last by — by coordinates are zero, and in this case, we
use the notation R** C R’2.

Definition 4.12. Let M, p denote the moduli space which associates to any scheme S over
Spec(Z,) the set of Og[t]-modules ™ Vo[tlos © Wo C ™ Viltlo, such that

o Wo/t™ Voltlos C t™ Voltlos/t™ Vo[t]os is locally a direct factor as an Og-module, and

o for Wy, := Wy N Og(t)" (see Remark 4.11; in particular, Wy = 0 and Wp,, = W),
there is an extension Wy i—1 — Wy — Q; where the first arrow is the natural inclusion
and the second arrow is the projection to the i-th component such that, as the image of
the projection, the Og[t]-module t™ Og[t] € Q; C t™ Oglt] is a well-defined point in
Mo, m,cr, (S) (in other words, Q;/t™" Oglt] € t™ Oglt]/t™" Og]t] is locally a direct factor
as an Og-module).

The moduli space Mg, 5 is not defined in [HN] or [HLS]. To show the representability of
Mo m,B, we need the following lemmas.

Lemma 4.13. In Definition 4.12, for each i, the quotient
Wo,i/t™ Oslt]' € ™ Oslt]' /t™ Os )’
is locally a direct factor as an Og-module.
Proof. From the definition of W, ;, it is clear that tm Og[t) Wo.i Ct™ Oglt]*, so the inclusion
above makes sense. To show that it is locally a direct factor, it suffices to prove that ™ Og [1f]Z /Wo.i

is a projective Og-module (see Remark 4.2). For ¢ = 1, this is given in the definition, since Wy 1 = Q4
is required to be a well-defined point in Mg ., g1.,. For larger i, we have extensions

t"™ Og[t] ™ Woio1 — t™ Ogt] /Wo.i — t™ Ost]/Q;,
and the result follows by induction on 4. O
Lemma 4.14. In Definition 4.12, for each i, the natural Og-map
t" Og[t] "t Wo.iz1 — t™ Os[t]"/Wo.i

is universally injective, in the sense that after any base change S’ — S, the induced Og-map is
mjective.
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Proof. Taking quotients, the extension of Og[t]-modules Wy ;1 — Wy; — Q, induces an extension
of Og-modules
Wo o1/t Ot~ — Wi/t Oslt] — Qi/t™ Oslt],
where the second arrow is still the projection to the i-th component of ™ Og|t]/t™" Og]t]*. This
extension splits since Q; /t™" Oglt] is Og-projective.
After base change along S’ — S, we obtain an extension

+ i + ; +
Wo,izt/t™ Os[t] ™ — Wy /t™ Osi[t] — Qi/t™ Os|t],
where the second arrow is again the projection to the i-th component of t™ Og [t]!/t™" O [t]¢, and
Wi (resp. Qj) is the image of Wy ; @04 Osr — t"™ Ogi[t]* (resp. Q; ®og Osr — t™ Og|t]). This
implies
Wi Nt™ O [t~ = Woio1s

which is exactly the desired universal injectivity. O
Remark 4.15. As a universally injective Og-map,

" Og[t] ™ Wo,im1 —> t™ Og[t]' /Wi

is, in particular, injective, which implies Wy ; N t™ Og[t]'™! = Wy ;_1; this recovers the equality
Wo.: N Os(t)™1 = Wy,—1. The universal injectivity is useful in proving the representability of
Mo.m, B, since it defines an open condition.

Proposition 4.16. The moduli space Mo . B 15 representable by a scheme.

Proof. By Lemma 4.13, there is a natural embedding

Moz =TT (et Zol /0 Z[0]7) % gr (0™ 2,10/ 2, 11]):))

1<i<n
— H (gr(Z;(m‘*'fm_)) % gr((ZZﬁ-,m_)i)).
1<i<n

o
where gr(Z4™ ~™ ) is the classical Grassmannian scheme (strictly speaking, a disjoint union of

classcial Grassmannian schemes indexed by ranks) whose S/Spec(Zy)-valued points are locally

Og-direct factors L C Og(er_mi), and (1™ Z[t]/t™ Zy[t]); (resp. (Z™ —™);) is a copy of

P
tm Z[t] /™ Zyt] (vesp. Z;"+_m7). Choose isomorphisms

m~ i/ ymt i~ rpi(mt
£ L Bl 2 T

_m’)

such that - ‘ . ‘ - - ‘
" Lt T A L[] T C ™ L[t /T L[]

corresponds to

+

i—1)(m
Zi-

and, viewing (™ Zp[t]/t™ Z,[t]); C t™ Zy[t]!/t™ Z,[t]" as the subset where the first i — 1 coordi-
nates vanish, identify it with (Z;”Jr_"f )i C Z;,(m+7m7) where the first (i —1)(m™* —m™) coordinates

vanish.
Under this embedding Wy — (W, @;);, the submodule W; is the image of Wy ; /tm+05[t}i in
1" Og[t)i 4 O] = OX™ ™) and Q; is the image of Q;/t™ Og[t] in (" Z,[t]/t™" Z,[t]); =
mt—m™
(Zy )i
The image is the locally closed subscheme of

—m7) ¢ gitmtmT),

i(mT—m™ m*—m
IT (@ =) <@y = )0)
1<i<n
cut out by:
e the closed condition W; C (Qfg(er—m*);
e the closed condition W; C W,;
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the open condition that (’)g("ﬁ*m )/Wi — (’)g(m+7m )/Wn is universally injective (see
Lemma 4.14 and Remark 4.15);

the closed condition W,,/W; C Q; in (O’Sn+7m7)i;

the open condition that the inclusion W,, /W, C Q; is surjective; and

the closed condition that W, is stable under the nilpotent t-action on

gm” Os[t]n/tm+ Oglt]" = OZ(m*—mf).

Hence My, p is representable by a locally closed subscheme of a projective scheme. O

Lemma 4.17. There exist natural embeddings Mo m 1w C Mom,B C Mom,c such that the compos-
ite Mom, 7 C Mo,m,q s the same as the embedding given in Definition 4.8.

Proof. The embedding Mgy, 7 C Mo m,pB is given by
(uo) ’—>ul D--- EBun = W07

which clearly defines a point of Mg . 5.
For the embedding Mg B C Mo m,q, define

Wi = Wo + (t +wp) W .
Then t™ V;[tlo, C W; C t™ V,[t]os, and it remains to show that t™ V;[t]o, /Wi is a projective

Og-module whose rank is independent of i. For i = 0,n, projectivity follows from the definition.
For other 4, first observe a natural isomorphism
Wi/Wi—1 = (t+wp) 1 Q;/Q:.
Indeed,
Wi Wo+ (t+wy) Wi (t +wp) " Wo 4 (ttwy)tQ;

Wiii Wo+(t+wy) " Woii1  (t+wy) " Woii1 +Woi Q; ’

where we used (t + w,) 'Og[t] N Os[t] = Ogt]. In particular, W;/W,;_1 is a rank-1 projective
Og-module.
Assume t"™ V;[tlo, /Wi is Og-projective. From the extension

Wi/Wi—l — tm_Vi[t}os/Wi_l — tm_Vi[t]os/Wi,
we deduce that t™ V;[t]os/W;—1 is Og-projective. Now, from
tm_Vifl[t](’)S /Wi,1 — tm_Vi[t}@S/Wi,l — tm_Vi[t]os/tm_Vi,l[t]os,

we see that t™ V,;_4[t]os/Wi—1 is Og-projective; thus, by downward induction on i, projectiv-
ity holds for all i. A rank count using the two extensions above shows that the Og-rank of
t™ V;[tlos /Wi is independent of i.

Finally, by construction, the composite Mg 7 C Mo m,c is the same as in Definition 4.8. O
Remark 4.18. Using the proof of Proposition 4.16 and the construction of the embedding Mg ., B C
Mo, m,¢ in Lemma 4.17, one can show that Mg, g is a locally closed subscheme of Mg, ¢ under

that embedding. Note that the additional requirement W; = Wy + (t + w,) "W ; defines a locally
closed condition. Since we do not need this result in this paper, the proof is omitted.

We now justify the definition of Mg, g by showing that it is a truncated deformation of Grp q,
from Flgr,. Note that in our setting, Grp,; = Flp . First, we give equivalent characterizations of
GI“B’;C.

Lemma 4.19. Let R be any k-algebra. The set Grp ;,(R) identifies functorially with the set of iso-
morphism classes of pairs (F,«) where F is a fpgec B-torsor over the formal disc Dy := Spec(R][t])
and o is a trivialization of F over the punctured formal disc D%, := Spec(R((t)).

Proof. This is a special case of [Zhul6, Proposition 1.3.6]. The map is induced by
g € B(R(t)) — g(Fo, ),

where Fy = B X Dy and «g is the identity morphism. The main point is that any such F is étale
locally on Spec(R) trivial [Zhul6, Lemma 1.3.7]. O
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We also give an equivalent characterization of Grp using chains of lattices with additional
structure.

Lemma 4.20. Let R be any k-algebra. The set Grp i(R) identifies functorially with the set of
chains of projective R[[t]-modules Co C C1 C --- C Cy, such that C; is an R[t]-lattice in R(t)" C
R()™ and C; = C,, N R((t)*, with the consecutive quotient C;/C;_1 being an R[t]-lattice in R(t)) =
R(t)!/R((t)""! via the projection to the i-th component.

Proof. By Lemma 4.3, Grp(R) consists of isomorphism classes of pairs (F, «). Starting from (F, «),

note that B stabilizes the standard flag 0 C R[t] C --- C R[t]™. Using the contracted products

V; = F xP O}'%[[t]], which are rank-i vector bundles on Dg [Zhul6, Sec.0.3.3], taking global sections

yields a chain C, of projective R[t]-modules with C; := I'(V;) of rank i. Via a we have

D(F xP Oppy) € D(F xP Opyy) = D(Ofyy) = R(2)" € R(H)",
so each C; is an R[t]-lattice in R(t)* and C; = C,, N R((t))*. Moreover, C;/C;_1 is the R[t]-lattice in
R((t)) corresponding to F xB (Oéa[[t]]/oatl]])'

Conversely, from such a chain C, one obtains a B-torsor as the isomorphism scheme between C,
and the standard chain 0 C R[t] C --- C R[¢]™. This is a B-torsor since the automorphism group
scheme of the standard chain is B and, as C; and C;/C;_; are étale locally free on Spec(R) [Zhul6,
Lemma 1.3.7], the chain is étale locally isomorphic to the standard one. The trivialization « is
induced from C;[1] = R((t)".

It is standard to check that these constructions are inverse to each other. O

Lemma 4.20 will be used as the definition of Grp j in the next two lemmas.

Lemma 4.21. There ezists a natural closed embedding taking the generic fiber Mo m, B,y of Mo,m,B
into Grg. The embeddings Mo m. B,y C Gr, Mom,B C Mom,c, Mom,an C Grg and Grp C Grg
(induced from B C G) form a Cartesian diagram

MO,m,B,T/ e GI‘B

L

M07m,G717 I Grg.

Proof. Let R be a Qp-algebra and Wy € Mg, B,,(R). To define the embedding Mg m 5, C Grag,
specify the image of W, as follows. Define
t™ R[] c ¢; c t™ R[t]’
to be the R[t]-lattice given by Woﬁi/thrR[t]i using Definition 3.1(i). This yields a point in Grp(R)
since
; Wonm  t™ R[]’ Wo.i
Won NR(t) =Wy, = —— N - = m
0 ®) 0 tm R[» t" R[)f  tm R[t)
— Cn " R G
tmT R[t]r  tmt Rttt R[]
— C, NR(t)" =G,
and the fact that C;/C;_1 is an R[t]-lattice follows from

t™  R[t] t™  RJt]

" R(t) _ tmt R[¢] _ tmT R[t) _ "™ RJ[t]
. - Ci Ci_1 - Wo,i Wo,i—1 - . .
Ci/Ci1 tmT R[¢] /tm+ R[t]i-1 tm™T R[¢]i /tm+ R[t]i-1 Qi

Since Grg C Grg is given by
CocCiC---CCyhr—Cyp,

the diagram is Cartesian, and thus the map Mg, B, — Grp is a closed embedding by Lemma
4.4. O
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Lemma 4.22. There exists a canonical closed embedding taking the special fiber Mo v B.s 0f Mom.B
into Flp = Grp. The embeddings Mo m.B,s C Flg, Momp C Mom.c, Mom.gs C Flg and
Flp C Flg form a Cartesian diagram

Mo m,B,s —Flp

L

MO,m,G,s — FIG
Proof. The proof is the same as that of Lemma 4.21 (the base field is irrelevant). Note that
Flp C Flg is given by
CoCCiC- - CCrh— Lo C L C---CLy=t18,

where £; := C, +t7'C;. Replacing Wy ; with C; and working with the power series ring instead, the
proof of Lemma 4.17 shows that

LCLiC-C&=t"¢
is a well-defined t-periodic lattice chain. 0

By Lemma 4.21 and Lemma 4.22, we conclude that My ,, p serves as a truncated deformation
of Grp g, from Flg,.

5. THE G,,-ACTION AND HYPERBOLIC LOCALIZATION FOR THE IWAHORI LEVEL

We follow the convention that G,,, denotes the multiplicative group scheme, which is the same as
GL;.

The consecutive quotients Q; in Definition 4.12 define a morphism Mg . g — Mg, m,7. Combin-
ing this morphism with the inclusion Mg ;. p C Mo, m,¢ in Lemma 4.17, we obtain the diagram

(5.1) Mo,m,B

TN

Mo,m,T Mo,m,G-

In this section, we describe Diagram 5.1 via hyperbolic localization on Mg, . It turns out to
be an analogue of [HR21, (1.1)].

Remark 5.1. We can define a morphism Grg — Grp by
ChcCicC---CCp+— (Cl/CO, Cg/cl, ey Cn/Cn_l)

Unlike Lemma 4.9 and Lemma 4.21, the commutative diagram formed by Mg .., 5 = Mo m, 1, their
embeddings into the affine Grassmannians, and the map Grp — Grr (induced from the quotient
map B — T),

MO,m,B,n e GI“B

L

Mo,y — Gr7,

is not Cartesian. The reason is that Mg, only requires the consecutive quotients Q; to be
bounded by m, while the lattices W, ; themselves need not be bounded by m.

5.1. The Gy,-action on truncated deformations. To apply the techniques of [Ril9] to Mg .G,
we introduce a G,,-action on My ,, ¢, inherited from an action of a larger group scheme I, that
can be viewed as a truncated (in the sense of quotients) deformation of positive loop group schemes.

Recall the definition of I, from [HLS, Definition 6.4.1]. Although [HLS, Definition 6.4.1] is stated
for GSp,,,, all results in [HLS, Sec.6.4] apply to GL,, after ignoring the symplectic form.
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Definition 5.2. Let I,,, be the group-valued functor assigning to a Zp-algebra R the group of
automorphisms

(t+wp) 1™ Vo[t]r
€ Aut

g &8t R[ﬂ( Vo[t r )

with the following property:

R — —1l,m™
e g preserves the images t"™ V,[t]g of " V,[t]g in (wavi*\j 0 Doltlr for 0 < i < n.
OltIR

The group scheme I,,, is smooth over Spec(Z,) with connected geometric fibers [HLS, Proposition
6.4.6]; it serves as a truncated deformation from the Iwahori subgroup to the hyperspecial subgroup
[HLS, Lemma 6.2.3, Lemma 6.4.3, Remark 6.4.5].

For any Z,-algebra R, the group T'(R) acts naturally on (¢ + w,) "1™ Vy[t]r by
(tl, . ,tn) . (’Ul, N ,’Un) = (tlvl, N ,tnvn),

and this action preserves t™ V;[t]r. Hence we obtain a natural embedding 7' C I,, and thus
a T-action on Mg, . Throughout the paper, fix a cocharacter A € X, (T) such that, via the
conjugation action (using 7' C G), the corresponding cocharacter of G yields the attractor G+ = B
as in [HR21, Sec.3.3.1]. (We recall the definitions of attractors and other objects from hyperbolic
localization below and equivalently, we require that the natural pairing between A and any positive
root attached to B give a positive number.) The existence of such a cocharacter is well known for
reductive groups over a field (e.g. [Mil, Theorem 25.1]); for split reductive groups (such as GL,
and GSp,,,), the same cocharacter defined over Spec(Z) works over any base field. Over Spec(Z,),
the group schemes B and G coincide, since both are smooth (hence reduced [StaPro, Tag 034E])
closed subgroup schemes of G and agree on every geometric fiber [HR21, Lemma 4.5].

Combining the T-action on My, ¢ with the cocharacter A yields a Gy,-action on Mg .-
Considering the embeddings Mg 7 C Mo m,B C Mom,c from Lemma 4.17, and since the T-
action is given by scalar multiplications on the coordinates of V, we see that Mg ., r and Mg ., B
are T-stable (though not I,,-stable). Hence they inherit G,,-actions. The G,,-action on Mg ,,, 1 is
easily seen to be trivial.

5.2. Hyperbolic localization on M, ¢. We recall some definitions and facts from [Ril9] in a
form suited to our situation.

Definition 5.3. [Ril9, Definition 1.3] Let X/S be a morphism of schemes, with a G,,-action on
X/S (trivial on S). Define three functors on S-schemes (writing X := X xgT):

X% T Hom$™ (T, Xr), X :Tw HomGm((AL)*, Xr), X~ : T~ Hom3"((A})~, X7),

where G, acts on (AL)T by the usual multiplication, on (AL)~ by its inverse, and trivially on 7.
The functor X is the functor of fixed points; X+ (resp. X ~) is the attractor (resp. repeller). There

are natural morphisms [Ril9, Sec. 1.6]
X+
X0 X,

(5.2)
:l: :l: . . . .
where ¢= (resp. p™) is evaluation at the zero (resp. unit) section.

Remark 5.4. Formation of X°, XT, and X~ commutes with base change. For X/Spec(Z,) with
a Gp-action, we write X, X;F, X -, etc., without ambiguity.

To ensure representability of these functors, we use the following notion. A G,,-action on X/S
is called étale locally linearizable if there exists a G,,-equivariant étale covering family {U; — X},
with each U; affine over S and carrying a G,,-action.

Lemma 5.5. Let X/S be a morphism between schemes with an étale locally linearizable G, -action,
then X°, X*, and X~ are representable by schemes.

Proof. This is a special case of [Ril9, Theorem A]. O
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If the covering family {U; — X}; can be chosen Zariski, we say the action is Zariski locally
linearizable. The G,,-action on My ,, ¢ is of this form.

Lemma 5.6. The G,,-action on Mo . s Zariski locally linearizable. Hence M&m,@ ./\/l(']"m o
and Mg . o are representable by schemes.

Proof. As in [HR21, Lemma 3.3], there is a natural G,,-equivariant closed embedding of Mg . ¢
into a product of classical Grassmannians, and the induced G,,,-action on the target (given by scalar
multiplication on coordinates) is Zariski locally linearizable. This yields the claim. O

Remark 5.7. In general, for any G,,-action on X/S with S a quasi-separated algebraic space and
X a quasi-separated algebraic space locally of finite presentation over S, the action is étale locally
linearizable [AHR, Theorem 10.1]. This applies to Mg . c/Spec(Zy) since Mg ¢ is projective
over Spec(Z,).

For our G,,-action on Mg, ¢, the “+” version of (5.2) reads

(5.3) MG e

% K
0
Mo,m,G Mo m.c-

5.2.1. Hyperbolic localization on the generic fiber. Over the generic point Spec(Q,), Diagram 5.1
is naturally isomorphic to Diagram 5.3, mirroring [HR21, Proposition 3.4]. We first record two
lemmas.

Lemma 5.8. Let R be a ring and X C Y a closed embedding of R-schemes. If a morphism
AL =Y restricts to a morphism fle . r factoring through X, then f itself factors through X.

Proof. Let I C RJt] be the ideal cutting out the preimage of X in AL. Our assumption implies
t=1I = 0. Since t is a non zero-divisor in R[t], we have I = 0, hence f factors through X. O

Lemma 5.9. Let R be a ring and X CY a G,,-equivariant closed embedding of R-schemes with an
étale locally linearizable G,,-action on'Y. Then the induced map X — Y is a closed embedding
and the diagram

Xt —sY+t

|

X ——Y
is Cartesian.
Proof. For any R — R/, a point of (X xy Y T)(R') is a G,-equivariant map g : (A}, )™ — Y with
9(1) € X(R'). Since X is Gy,-stable, g|g,, ,, factors through Xp/, and by Lemma 5.8 so does g.

Hence (X xy Y1)(R') = XT(R'), proving the Cartesian statement. The morphism X+ — YT is a
closed embedding because X — Y is. O

Remark 5.10. The closed embedding X* — YT in Lemma 5.9 also appears under different
hypotheses in [HR21, Corollary 2.3].

Proposition 5.11. Over Spec(Q,), there is a natural isomorphism between Diagram 5.1 and Dia-
gram 5.3:

Momry ¢ Mompy ——— Mom,an

, ;m,G.n-
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Proof. There is a Gp,-action on Grg as well: for a Qp-algebra R, elements of T'(R) act on R((t)"
by coordinatewise scalar multiplication, hence on R[¢]-lattices; composing with A : G,,, — T gives a
Gn-action on Grg. With this action, the embedding of Lemma 4.4 is G,,-equivariant and identifies
Mo m,c,n with the locus of R[t]-lattices in R((t)™ bounded by m. This matches [HR21, Sec. 3.3]
(their cocharacter x plays the role of our \).

First, M&mﬂm = Mo, m,1,n- This follows from the Cartesian diagram of Lemma 4.9

MO,m,T,n e GI‘T

Ny

MO,m,G,n E—— GI"G

together with Gr% = Grp [HR21, Proposition 3.4]. Concretely, /\/187,,%61777 consists of G,,-fixed
lattices bounded by m, i.e. precisely the image of Mg m 1.

Next, Ma”_’m)Gm = Mom,Bn. By [HR21, Proposition 3.4], we have Grg = Grp C Grg. The
diagram

+ +
/\/lO,mGJ7 — Grj

Ny

MO,m,G,n —_— GI“G

is Cartesian by Lemma 5.9, since Mo m,gn C Grg is a Gy,-equivariant closed embedding. The
claim then follows from Lemma 4.21, which asserts that

MO,m,B,n — GI‘B

L

MO,m,G,n ——— GI‘G

is Cartesian. Under these identifications, p* corresponds to the inclusion Mo .5, C Mo m,c,»-
Finally, ¢* corresponds to Mo .5y — Mom,rn. Indeed, the G,-action on Mg, p leaves
the consecutive quotients Q; unchanged by definition; using that sections of Mg ., ¢,r — Spec(R)
are closed embeddings (since Mg ¢ — Spec(Z,) is separated) and Lemma 5.8, we obtain the
identification. O

5.2.2. Hyperbolic localization on the special fiber. The special fiber of (5.3),

(54) MEJF,m,G,s

% K
M) M
0,m,G,s 0,m,G,s>

is subtler: in general the equalities Mg ,,, o, = Mo .1, and Maimvg,s = Mo,m,B,s do not hold.
Nevertheless, for G = GL,, (and similarly GSp,,), the scheme Mg,m,G,s (resp. M, o) contains
Mo .15 (tesp. Mo.m.B.s) as an open and closed subscheme, with (¢*) ™ (Mom.1.s) = Mom.B.s-

Example 5.12. Consider G = GL,. Points of Flg are t-periodic lattice chains £, : £9 C £1 C
Lo = t71€y. The G,,-action is induced by the T-action on coordinates via A and translates such
chains.
If £, is G,-fixed, then £y and £; are fixed. Using GrOG = Grp [HR21, Proposition 3.4], we may
write
Lo: U BUCVI DV Ct U @t s,

with U; (resp. V;) rank-1 lattices in the i-th coordinate. By rank considerations, the only possibilities
are

VidVy = t71U1 ®Us; or U @t71u2.
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The embedding Fly C Flg yields the first case; the second is obtained by left-multiplying by (the
permutation matrix representing) the nontrivial element a € Sy (the Weyl group). Thus

FIg, = Fly [] a(®lp).

If £, € Flg, then the natural G,,-equivariant maps Flg — Grg sending £, to £9 and to £1 show
that £o, L1 € Grg. Writing £y (resp. £1) as a chain C, (resp. C.) as in Lemma 4.20, one finds two
disjoint cases by considering the image ¢ (£,); in the first, £ = £9 +t!C; and £, corresponds to
Flg C Flg, and in the second, £, = £; + ¢t~ 1C} and the shift of £, corresponds to Flg. Hence

FI§ = Flp H (Flg),

where s : £4 — £,_1 is the shift automorphism on Flg. Moreover, ¢t (Flg) = Fly and ¢* (s(Flg)) =
a(Flr), so (¢7)~}(Flr) = Flg. By Lemma 5.9, the analogous statements hold for Mo . cs-

Proposition 5.13. Over Spec(F,), there is a natural morphism between Diagram 5.1 and Diagram
5.4

MO,m,T,s D MO,m,B,s I MO,m,G,s

qt +
P
— _ ..
MOmGs Momcé Mo,m.,c.s

where v and v are open and closed embeddings, and the left square is Cartesian.

Proof. The argument follows Example 5.12. For a G,,-fixed t-periodic lattice chain
LC L C--CLy=t""L,

write £9 = Uy @ --- ® U,, [HR21, Proposition 3.4]. At each step one replaces a single U; by t~'U;,
yielding n! possibilities, naturally indexed by the Weyl group W. Thus

MOm Gs = H w(Mo,m,1.s),

weWw

where w acts via the corresponding permutation of coordinates.

For £, in the attractor, there are again n! candidates for ¢q*(£,). By rank considerations,
" (L) € Mo m1.s C Mo m..s if and only if £4 € Mg m 5.s. Hence (¢7) " (Mo m.1.s) = Mom,B.s,
and the left square is Cartesian. O

Remark 5.14. Applying the shift automorphism of Flg (as in Example 5.12) to Proposition 5.13,
one finds that for some (but not all) w # 1 in W (namely, those induced by shifts), the preimage
(¢") " H(w(Mom.s)) is a copy of Mo m.B.s-

Remark 5.15. Proposition 5.13 is an analogue of the “4”-diagram in [HR21, Proposition 4.7]. One
can also obtain it by pulling back that diagram (note that Pt there is B under our assumptions)
and applying Lemma 5.9. Since good moduli interpretations are available in our setting, we chose
a more direct proof.

6. TRUNCATED DEFORMATIONS FOR THE I';(p)-LEVEL

So far we have worked at the Iwahori level. We now pass to the I'; (p)-level.

First, we introduce the geometric objects that are T-torsors over Mg . ¢, Mo.m,7, and Mo . 5.
Note that the notations for these objects in this paper are slightly different from those in [HLS]. In
[HLS], the T-torsor over My ,,, ¢ is denoted by /\/lg’ "G but since we already use this notation for
the attractor, we will instead write Mg,m,G for the T-torsor over Mg m, q-

We briefly review determinant line bundles and their distinguished sections attached to complexes.
For details, see [HLS, Sec.2], [KM], and [Knud].

Let C = [V % W] be a complex of finite-rank projective Og-modules with rank(V) = rank(WW)
(i.e. C has virtual rank 0). The determinant line bundle Det(C') attached to C'is defined as Det(W)®
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Det(V)~! (for a finitely generated projective module, Det denotes the top exterior power), and it
is equipped with the distinguished section

Og 2 Det(V) @ Det(V) L 299 bt () @ Det(V) ™! =: Det(C).

Recall the following definition from [HLS, Sec.7.3] (there stated for GSp,,; we adapt it to GL,).
Definition 6.1. Let Mé’m’G be the T-torsor over My ,,, ¢ parametrizing isomorphisms
Wi . Wi
Vi1 [tos " Vi[tlos
We define M, - and MG, p by pulling back this T-torsor along the embeddings Mo mr C
Mom,B C Mo,m,c in Lemma 4.17, obtaining embeddings
Mb e € Mo € Mb e

The scheme M}, serves as a truncated deformation to a T-torsor over the affine grassmannian
m,

from the enhanced affine flag variety Fl, (Definition 3.6). We define Fl%. and Fl% by pulling back
Fl, — Flg (Definition 3.6) along Fly C Flg C Flg.

i Det ~ Og.

Lemma 6.2. There exists a canonical closed embedding of the special fiber MG, o . of Mg .
into FltG lifting the closed embedding in Lemma 4.6, and the resulting diagram

t t
MO,m,G,s FIG

|

MO,nL,G,s — FIG
is Cartesian. Analogous statements hold with G replaced by T and by B.

Proof. For G, this is [HLS, Lemma 9.3.2]. The key point is the canonical isomorphism ([HLS,
Lemma 2.3.2])

Det([Wiet /" Vicaltlos — Wit™ Viltlos]) = We/Wima) @ (Viltlos /Vi-altlos) ™

and the factor (V;[t]/V;_1[t]) admits a canonical trivialization using the basis e; € V. Thus the
consecutive determinant line bundles identify with the consecutive quotients.
The cases of T and B follow by base change. O

7. THE G,,-ACTION AND HYPERBOLIC LOCALIZATION FOR THE I'y(p)-LEVEL

In this section, we generalize the results of §5 to the setting of T-torsors.

First, we specify the analogue of Diagram 5.1 for I'; (p)-level objects. The morphism M67m7B -
M(t)’m,G is given in Definition 6.1, so it remains to define a morphism ./\/lf)’m’B — Mf),m,r
Lemma 7.1. There exists a natural morphism Mg . 5 — Mg, ¢ lifting Mo m.5 — Mo m,T, and
the resulting diagram

Mé,m,B M(t':),m,T

L

MO,’m,B - MO,m,T
is Cartesian.
Proof. We need a natural isomorphism
W1 Wi ~ oF (t+ wp)71 oF
L (=)
tm Vifl[t]os tmTY; [t]os tm Os[ﬁ] (t + wp) tm Os[t]
By [HLS, Lemma 2.3.2] there are isomorphisms of determinant line bundles
W;_1 W; W; tm+ V; [t] Og
+ - + } = T } )
tm Vi—l[t]os tm Vi[t]os Wi_1 tm Vi—l[t]os

Det[

Det[ = Det[
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Q; (t"‘wp)ilgi } ~

o o [ w) IO (+w,) T Ol
tm* Oglt] ” (t+wp) "1t Oglt]] Det[ - }

Q; tm* Og|t]

; t o, . . .
t Wwil — { +pr)‘ Qi , we obtain an isomorphism

Det[

From the proof of Lemma 4.17, where it is shown tha
of complexes

[ Wi | " Viltos } ~ [(t+wp)_19i R (t+wp)_1tm+(95[f]}
Wicr ™V [tlogd Qi tm* Oglt]

Applying the determinant functor yields the desired natural isomorphism. Since the isomorphisms
in [HLS, Lemma 2.3.2] preserve the distinguished sections, and any isomorphism of complexes
preserves distinguished sections under the determinant, the natural isomorphism above identifies
the distinguished sections. U

Thus we obtain the diagram of T-torsors

(7.1)

t
0,m,B

M
t t
0,m,T 0,m,G*
Lemma 7.2. The two squares formed by Diagram 5.1 and Diagram 7.1

t t t
— _
MO,m,T MO,m,B MO,m,G

Momr +——— Momp ——— Mom:-
are Cartesian.
Proof. This follows from Definition 6.1 and Lemma 7.1. U

The action of I,,, on Mg . ¢ (§5.1) lifts naturally to an action on ./\/l(t),mg by translating trivial-
izations ([HLS, Lemma 7.5.1]). Hence we obtain a G,,-action on Mg,  such that the projection
Méﬁmyg — Mo m,¢ is Gp-equivariant. Since MB,m,G — Mo m,c is affine and the G,,-action on
Mo m,c is Zariski locally linearizable (Lemma 5.6), the G,,-action on MB’mG is also Zariski locally
linearizable. Therefore, the objects obtained by hyperbolic localization on MB,m,G with respect
to this G,,-action are representable by schemes (Lemma 5.5). We have the following diagram of
schemes:

(7.2) Mé’,:rn,,G

SN

t,0 t
M(),m,G MO,m,G’

Remark 7.3. When we mention the T-action on M o, M{ ., and M§ . 5, we always mean
the T-action on the trivializations in Definition 6.1, rather than the T-action induced by the I,,-
action. For the latter, we only use the induced G,,-action to avoid ambiguity. By definition, the
I,-action (and hence the G,,-action) commutes with the T-action.

We now show that over the generic point Spec(Q,), there is a natural isomorphism between
Diagrams 7.1 and 7.2, generalizing Proposition 5.11 to T-torsors. Before proving this, we observe
that on the generic fiber the T-torsor Mam,Gm — Mo, m,a,y is actually trivial.

Lemma 7.4. The T-torsor M§,, o, — MomGny is trivial. Moreover, there exists an Ly ;-
equivariant (hence G, ,-equivariant) canonical section cany ,, trivializing this T-torsor. When G is
replaced by T or by B, analogous statements hold. We abuse notation and denote all these canonical
sections by cany .
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Proof. It suffices to treat G, since the other cases follow by base change. To define can; ,,, we
specify the canonical trivializations ; in Definition 6.1 for any W;, i.e. an invertible section of

Wi_1 Wi

Det — .
tm*V,_1[tos tm*V; [tog

We claim that the distinguished section of this determinant line bundle is invertible on the generic

fiber. Indeed, the morphism +W“1 — — is an isomorphism over the generic fiber by
tm Vifl[t]os tm Vi[t]os

Lemma 4.3. Thus the distinguished section provides a section of the T-torsor. This section is I,,-
equivariant, since the I,,,-action on My ,, ¢ preserves distinguished sections (it induces isomorphisms
of the underlying complexes). O

Proposition 7.5. Over Spec(Q,), there is a natural isomorphism between Diagram 7.1 and Diagram
7.2

t t t
— _
MOJH,TJI MOJmB’JI MO,m,G,n

ot bt
t,0 q t+ P t
MO,m,G,n MO-,myG-,n MOJ'%GJ]’

and this isomorphism lifts that of Proposition 5.11.

Proof. By Lemma 7.4, we have an identification M&me = Mo,m,q,n X T, with G,, acting trivially
on the T-factor. Hence

t,0 _ 0 _ _ t
MO,m,G,n - MO,m,G’,n xT = MO,W7T777 xT = MO,m,T,n’

t,+ _ + o - t
Mo = Moman X T =Mompny xXT = Mg gy

as required. ([l

Over the special point Spec(F,), Diagram 7.1 becomes even simpler for the I'i(p)-level. Recall
that there is a natural closed embedding M, o, C F1, (Lemma 6.2). Define a T-action on Flj
by

(tO) : (SO7¢O) = (S/ov(blo)7

where £/ := t,£; (translation of the t-periodic lattice chain) and

o /e s e U 05 2 0.

Using the cocharacter \, we obtain a G,,-action on Fl. Both Fli, — Flg and MG s C F1,, are
G-equivariant ([HLS, Lemma 9.3.2]).

Remark 7.6. In the definition of ¢}, the final factor Og RN Og is essential; without it, even FltT
would not be fixed by the G,,-action.

Proposition 7.7. Over the special point Spec(F,), there exists a natural isomorphism between
Diagram 7.1 and Diagram 7.2

t t t
— —_—>
MO,m,T,s MO,m B,s MO m,G,s

t+ t+
t,0 q t+ D :
— _
MO,m,G,s MO,m,G,s MO,m,G’,s’

and this isomorphism lifts that of Proposition 5.13.
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Proof. Let f : M}, 0,m,c — Mo,m,c be the Gp,-equivariant projection. Then f(M 0 m.G. s) C MO m.Gs

By the proof of Proposition 5.13, M{ . & . = [L,ew w(Mom,1.s). For z € f~H(M MO

T € Mo MG if and only if f(x) lies in the component corresponding to 1 € W. Indeed, on the

component indexed by w € W, the element ¢ € G,,, acts by “A(¢)~! - A\(¢) (with “A(t) := A(w™tw))

via the T-action as a T-torsor, and this equals 1 for all ¢ if and only if w = 1 (our fixed A is regular).
Similarly, f(MO m.G.s) C MO m.G.s+ From the preceding analysis, f(/\/l0 m.G.s) liesin Mo 5 s C

0.m.G.s), We have

ME;WG?S, since the other components disappear. Note that the G,,-action on Mg, B s does not
change the consecutive quotients Q;; by Lemma 7.1, the full preimage f~!'(Moqm 5,s) lies in the
attractor and hence equals ./\/l0 .G O

t
8. SHEAVES ON Mo m,G,n AND Mg,

In this section, we define certain (shifted) perverse sheaves on Mg .G, and Mf),m,G,n' As we will
prove later, via the closed embeddings Mg m.c,s C Flg (Lemma 4.6) and ./\/l(t),mﬂ?s - FltG (Lemma
6.2), the nearby cycles of these perverse sheaves yield central elements in the corresponding Hecke
algebras and these functions can be described explicitly (Theorem 10.12).

8.1. Construction of sheaves. To obtain the desired sheaves on Mg, o ., we introduce geometric
objects motivated by Oort—Tate theory [OT]. For more details, see [HLS, Sec.2, 5, 7]. In what
follows, a (p — 1)-st root a’ of some a € Og(S) means an element a’ € Og(S) such that (a')?~! = a.

Definition 8.1. Let M7, ~ be the scheme over Mg,  parametrizing (p — 1)-st roots of y;(a;),
where
Wi Wi
T - =

tm Vi—l[t](’)s tm Vi[t]os
is the trivialization of the determinant line bundle (Definition 6.1) and a; is the distinguished section
attached to this determinant line bundle. Acting on the trivial line bundle Og on the right-hand
side of ; defines a T-action on M} . Note that the morphism Mf . — M o is not
T-equivariant; rather, it is equivariant with respect to (p — 1) : T — T, given by t > tP~1. We
define M7, - and M} 5 by pulling back M{ o — M§,, o along the embeddings Mg, - C
MG o € MG, o from Definition 6.1.

Vi : Det[ } >~ Og

By definition, we obtain the diagram
(8.1) M’i’m!B
Mtl,m,T Mi,m,G

in which the arrow on the left is defined using Lemma 7.1. This diagram is compatible with Diagram
7.1.

Lemma 8.2. The two squares formed by Diagram 7.1 and Diagram 8.1

t t t
— _
Ml,m7T Ml,m,B Ml,'rmG

are Cartesian.

Proof. This follows from Definition 8.1 and Lemma 7.1. U

By definition, the morphism M{ . o — MG,  is finite. By Lemma 4.3, over the generic point
Spec(Q,) the distinguished section a; is invertible, so Mﬁ,m,G,n — MB,m,G,n is a finite étale cover
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with covering group the (p — 1)-st roots of the identity in T'(Q,), which we identify with T'(F,) via
Teichmiiller lifting as mentioned in §2.
The morphism M{ o — M, 5, admits a more explicit description.

Lemma 8.3. There is a canonical isomorphism M1, o . = Mo m,cn % T such that, combined with
the canonical trivialization MG, ., &, = Mom.gy X T from Lemma 7.4, the morphism M . &, —
MG .. B8 identified with

idx(p—1): MomanyxT — MomanxT,
where id is the identity on Mo .y and (p— 1) : T — T is t — tP~1, as in Definition 8.1.

Proof. From the proof of Lemma 7.4, the trivialization ¢, defining the canonical section canj ,
sends a; to ¢;(a;) =1 € Og(S). Since 1 is a (p—1)-st root of itself, we obtain a section Mg . cn —
MG . ., Which gives the canonical isomorphism. O

Remark 8.4. There is a natural I,,-action on M7,  lifting the I,-action on Mg, ~ [HLS,
Lemma 7.5.5]. Using the fixed cocharacter \, we obtain a G,,-action on Mj 5, which is again
Zariski locally linearizable since M7, o — MG, o is Gp-equivariant and affine. It therefore makes
sense to consider hyperbolic localization on Mtl’mYG, and one can prove analogues of Proposition
7.5 and Proposition 7.7 for Mﬁ,m,G using Lemma 8.3 (note that G,, acts only on the first factor).
Since we do not need these results, we omit the proofs.

We now introduce sheaves on Mo ;.G and Mg, o . Fix a prime £ # p. All sheaves are Q-
étale sheaves. As in [HR21], for a separated scheme X of finite type over a field F' whose cyclotomic
character Gal(F'/F) — Z], composed with Z; < Z;, admits a square root, we write D%(X, Q) (or
simply D%(X)) for the bounded derived category of Q,-complexes with constructible cohomology
sheaves on X. We denote by Perv(X) the heart of the perverse t-structure.

For any Q,-complex A and any integer n € Z, define

(8.2) A(n) == Aln](n/2),

where (1/2) denotes the half Tate twist using the chosen square root of the cyclotomic character,
and [-] is the usual cohomological shift.
Fix p € X(T)* dominant with respect to B. Denote by () the image of ¢ € G,,,(Q,((t))) under

Gim(@p(1)) = T(Qp(1)) € G(Qp((t)) — Cra(Qy)-

By enlarging m if necessary, we may (and do) assume () lies in the image of Mg, G, under the
embedding Mo m ., C Grg (Lemma 4.4).

Let O, C Mom.g.y be the I, ,-orbit (Definition 5.2) of u(t), and let O, be its closure in
Mo.m,G.y- For the inclusion j : O, < O, define the normalized Q,-intersection complex by middle
extension

‘All = j!*@€<d#>’
where d,, = dim(0,,). Via the closed embedding O, C Mg m G, the complex A, is an I, ,-
equivariant perverse sheaf on Mg ,,.¢,n. We may also regard A,, as a complex on Gr¢ via the closed
embedding Mo m ¢,y C Grg.

Remark 8.5. As a complex on Grg, A, coincides with the usual perverse sheaf (e.g. IC,y in
[HR21, (3.21)]) constructed using the Schubert stratification attached to p. Indeed, the I, ,-orbit
O,, as a set, agrees with the LTG-orbit of u(t) in Grg, where LYG(R) := G(R][t]) is the usual
positive loop group. Let k be a Q,-field. By the Chinese Remainder Theorem, I, ,,(k) is isomorphic

to the product of GL(%) and the standard Borel subgroup of GL(WFX‘;%) [HLS,
0] : .

Lemma 6.4.2]. The second factor does not change Wy, and by Lemma 4.3 we only need the first
factor for I, ,-orbits. Since G is smooth over Spec(Z,,), the reduction map

GL(k[1]") — CL( 2" )

tm‘*'frn_ kl[t]]n

is surjective, so I, ,-orbits agree with Lt G-orbits.
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To produce sheaves on M§ . ,» consider the I,,-equivariant morphisms (see Remark 8.4)

Mﬁ,m,G L> Mf),m,G — M07m7g.
Let B/} be the (shifted perverse) sheaf on Mg, o . obtained by pulling back A,, along the T-torsor
MG Gy = Mom,Gn- The I, y-equivariant (shifted perverse) sheaf Af = m.7*Bf on MG, o,
is the correct analogue of A, for the I'y(p)-level (and will make Theorem 10.12 hold). Note that
our notation differs slightly from that of [HLS], where A:[ denotes what we write as B:. Also, the
subscript m is necessary here, since unlike the i w hao ri case, as explained in §8.2, the sheaf AT

,m
genuinely depends on m.

Working directly with .A;r’m is technically difficult, so we pass to its monodromic pieces. We

recall some facts about monodromic sheaves in the sense of [HLS, Sec. 14]. Let
—X
x: T(Fp) — Q

be a general character. Since (p — 1) : T — T over Spec(Z,) is a connected finite étale cover with
covering group T'(F,), the character x defines a rank-one Q-local system on T. Following [HLS],
we denote by F, the rank-one local system corresponding to x~ ! (note the inverse). For each ring
k e {Z,, Zp, Qp, @p, F,, Fp}, we write Fy, := F, k for the base change to Tx. We suppress the index
k when clear.

Lemma 8.6. For any k as above,
(p-1).Q, = @ Frw on Tk.
XET(Fp)V

Proof. This is [HLS, Lemma 14.1.2(i)]. O

Lemma 8.7. For any k as above, the local system F,, is multiplicative:
(mk)*‘FXk = Fa ¥ F,
where my : Ty X Tx — Tk is multiplication and X is the external product.

Proof. This is [HLS, Lemma 14.1.2(ii)]. O

We recall the definition of y-monodromic complexes [HLS, Sec.16.2]. Let X be a finite-type
separated k-scheme with a T-action a : T x X — X.

Definition 8.8. A complex K € Db%(X,Q,) is (strongly) x-monodromic if there exists an isomor-
phism
0: a"K =5 F,®K,
such that:
(i) it is rigidified on the unit section, i.e. 0|11} x = idk;
(ii) it satisfies the cocycle condition, namely the diagram

(idr x a)*(Fy K K) =———= F, K a*K
(idea)*(G)Tz Zlid&&
(ao(idr x a)) K FRFRK

()

(ao(mxid) K

DD 1 x 1d)* (Fy K K).

commutes, where (x) uses Lemma 8.7.

Remark 8.9. When yx is trivial, Definition 8.8 reduces to the notion of T-equivariance. If K is
shifted perverse and k is a field, property (i) implies (ii) [HLS, Remark 16.2.2]. In this paper, K
will always be shifted perverse.
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By Lemma 8.7 and Definition 8.8, the sheaf F, is itself x-monodromic on 7', so Lemma 8.6
decomposes (p — 1).Q, into y-monodromic sheaves as y varies.

More generally, let 7:Y — X be a finite étale morphism of schemes with T-actions, where X is
as above and Y has the same properties, and suppose 7 is equivariant in the sense that for ¢t € T

andy €Y,
(.3) w(t-y) = 71 n(y).
If moreover 7 is a connected finite étale cover with covering group T'(F,), then for any K € D%(X,Q,)
there is a decomposition
T K = @ K,,
X

where each K, is y-monodromic; see [HLS, Sec.16.3]. In particular, for ¥ = /\/ltl’m’G’n, X =
Mé,m,G,n’ and K = 837 all hypotheses hold, and we obtain a decomposition of A;m = mm* (BI)
into y-monodromic shifted perverse sheaves:

(8.4) Al = (BY) = @A .
X

We can describe A1

Lm concretely using Lemma 8.3.

Lemma 8.10. Via the identification ngm)G’n = Mo,m,g,n X T given by cany ,, in Lemma 7.4,
there is a natural isomorphism

Ab e = ARF,.
Proof. By Lemma 8.3, the morphism 7 : M{ o — MG, o, isidx (p—1) : MomcnxT —

Mo m,an xT. Hence
mort (Bf) = ma (A, BQ) = A, B (p— .G, "2 4,8 (PF) =P AR,
X X

O

8.2. Dependence of A}, . on m. In this subsection, we discuss how A, = on Mg o varies
with the truncation index m. Choose m’ = (m/T,m/™) with m'T > m™* and m'~ <m~.

The closed embeddings Mg m.qn, C Grg and Mg gy, C Grg (Lemma 4.4) are compatible:
they factor as closed embeddings Mg m.c,n C Mom’,.c,n C Gra, where the inclusion p : Mo, C
Mo,m G,y is defined since any lattice bounded by m is also bounded by m’. Moreover, p is defined
over Z, by the same argument. By Remark 8.5, the I,,, ,-orbit of p(t) agrees with the I,/ ,-orbit,
so A, m and A, s are compatible in the sense that p. (A, m) = Ay m/. Thus for the Iwahori level,
there is an unambiguous perverse sheaf A, compatible with different truncations, and the nearby
cycles attached to this sheaf always give the same central function in the Iwahori Hecke algebra.

In contrast, Aj’m% and .A:Zm,’x need not be compatible; there can be up to p—1 different sheaves.
Lemma 8.11. There exists a natural closed embedding p* : M(t)’m’G - Mf)’m,’G such that

t

t P t
MO,m,G MO,m’,G

-

P
MO,m,G > MO,m/,G
18 Cartesian.

Proof. We need an isomorphism between the determinant line bundles
Wi Wi Wi Wi
Det — } and Det[ y - —
tm*Vi_1[tlos  t™Vi[tog t" TV, [tlos ™ Vi[tog
The second complex is the direct sum of the first and the complex
"V [Hos ™ Viltlos
|: /T — mt :|>
" Viaftlos T Viltog
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whose determinant line bundle is canonically trivialized using the basis e¢; € V [HLS, Lemma 7.2.1].
This yields the required isomorphism. O

In the proof of Lemma 8.11, we produced an isomorphism
Wi—1 Wi Wi_1 Wi
+ - + i| 1+ — = j| .
tm Vi—l[t]os tmTV; [t](gs tm Vi—l[t]OS tm TV, [t]os

Let a; (resp. aj) be the distinguished section of the complex on the left (resp. right). The isomor-

I+ n

Det[ ~ Det[

—m™T ! G

- aj, so it does not preserve distinguished sections. Since wy"
has a (p — 1)-st root in @, if and only if m’t — m™ is divisible by p — 1, the natural embedding
Mo C MY, g exists if and only if m'* —m™ is divisible by p — 1 (see also [HLS, Sec. 9.6]).
by and AT Recall that M, o and M, o admit trivializations
via the canonical sections can; ,, and cany ,, (Lemma 7.4).

phism sends a; to w,"

We now compare At

Proposition 8.12. Under the identifications MB,m,G,n = Mo,m,anxT and MB,m’,G,n = Mo.m',cn X
T given by cani ,,, and cani ., , the embedding p* of Lemma 8.11 is

’ XidT

fm,m pXmr
MO,m,G,n xT —» Mo m,G,n X TxT —— Mo,m/7g,n x T,

. ot AR
where fomm = (iAo wyr T )t Mom,ap = Mom,an x T, and wyt T Mom,gy —

Spec(Qp) — T is induced by (1L)I§r‘/+””“+7 . ,w;”/+7m+) € T'(Qp). Consequently,
( ) (A;m X) = A:’;m)x ®K§(m’+_m+)7

where ICy, is the rank-one local system on Spec(Q,) obtained by pulling back F, along the Q,-point

(wp, ..., wp) € T(Qp).

Proof. As noted above, the isomorphism
Wi1 Wi

tm*V,_1[tos - tM*Vi[t}oJ

+

1%

Def o s W]

%
tm’*V [ ] Os tm/+Vi [ﬂos

_ant
sends a; to wzf” m

section of Og, so the restriction of cany s to Mg m.q,, sends a; to wy"
By Lemma 8.10, .Amm + = AR Fy on Mo gy x T and Al = AR F on Moy xT.
Hence

-a;. By Lemma 7.4, can; ,, (resp. can /) sends a; (resp. a}) to the identity

=+ —m+

(f xidr)*(p x mr)* (A} ) = (f xid7)"(p x mr)* (A, K Fy)
= (f xidr)" (A, BFy KFy)

= (A, B Fy) @ LE=m™)
— AJr

By, X

")

4 m't—m
® K :
where in the second line we used Lemma 8.7. O

Remark 8.13. By definition, the rank-one local system K, in Proposition 8.12 is related to the

tamely ramified extension Q, (wll)/ (p _1)) /Qp. More precisely, K, corresponds to the character

3 Gal(@p/@p) — Gal(Q, (wp )/Qp) ~FX 2 T(F,) X Q)

where Gal(Qp( )/Qp) = F is given by o (0( )/w” =T mod pr), and A is the diagonal
map = — (z,...,z). Note that IC®(p71) =~ Q,, since ]:x (P=1) Q. This implies that when
m'T =mT (mod p— 1), (p")* (A, )= At

w,m’,x o, Xt

9. CENTRAL ELEMENTS IN HECKE ALGEBRAS

Using the sheaf A# m.x» We construct a function 7%, | in the Hecke algebra for the I'y (p)-level.

Before doing so, we review some facts about I'y (p)-Hecke algebras
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9.1. Definitions of Hecke algebras and their centers. For now, we work over the local field

F, (%), though the results in this subsection extend verbatim to any nonarchimedean local field (see

[HLS, Sec. 13] for more details). Recall that in §2 we fixed an Iwahori subgroup of G for every local

field (in particular for F,((t))); we denote it by I. Recall also the pro-p Iwahori subgroup I C I

which is the pro-unipotent radical of I. The Hecke algebra H(G) consists of compactly supported,

locally constant functions (with values in Q) on G(F,((t)) (which we denote simply by G later).
The Iwahori Hecke algebra H(G,T) C H(G) is

H(G,I) = {f S H(G) | f(ilgig) = f(g) Vi, i9 €1, Vg S G}
Similarly, the pro-p Iwahori (or I'y(p)) Hecke algebra H(G, ") C H(G) is
H(G,IT):={f e H(G) | f(ifgiy) = flg) Vi{,iz €T, Vge G}

Via reduction, I/IT = B(F,)/U(F,) = T(F,), so x gives a character of I, still denoted x. The
following variant of the Hecke algebra can be viewed as the y-component of H(G,I1) (though,
strictly speaking, one does not obtain a direct sum decomposition). Define

H(G,1,x) = { f € H(G) | flirgiz) = x"' (i) fl9) X '(i2) Vir,in €I, Vge G}

Recall we used x~! in the definition of F,, and we follow the same convention here. Since I C

ker(x), we have H(G,I,x) C H(G,I"). When y is trivial, clearly H(G, I, x) = H(G,I).

Remark 9.1. There is a natural inclusion P, #(G, I, x) C H(G,I"), but in general equality fails

1 1

because of the bi-y ~*-equivariance requirement in the definition of H(G, I, x) (i.e. x~*-equivariance

on both sides).

Normalize the Haar measure dzy on G so that vol(I) = 1. With respect to this measure, convo-
lution * endows all the Hecke algebras above with a multiplication. Denote their centers by Z(G),
Z(G,I), 2(G,I"), and Z(G,I,x). The identity of H(G,I,x) is the idempotent e, € H(G): it is
supported on I and satisfies e, (y) = x(y) ™! for y € I. When x is trivial, e, is the characteristic
function of I.

A key result for the I'; (p)-Hecke algebra ([Hail2, Lemma 10.0.1]) motivates the use of x-monodromic
sheaves.

Lemma 9.2. There is a canonical injective homomorphism

(9.1) Z2(G, 17 = [[2(G,1,x)
2> (2 % ey)y,

identifying Z(G, I'T) with the set of tuples (2X),, such that for any x, any w € W, and any extension

X : TEFL(2)) — Q¢" of x, the scalar by which zXdx; acts on iG (X)X coincides with the scalar by

_ o o w )
which z X dxy acts on Zg(x) X. Here, as above, we view x as a character of I.

Proof. This is [Hail2, Lemma 10.0.1]. O

In particular, any z € Z(G,I") C H(G,IT) can be written uniquely as a sum z = Zx 2z, with
zy = zxey € Z(G,1,x) CH(G,ITT).

9.2. Construction of central functions via nearby cycles. We recall some facts about nearby
cycles following [HR21, Sec. 6.0.1].

For a separated Fp,-scheme X of finite type, let DP(X x ;1) be the bounded derived category of Q-
complexes on XE with constructible cohomology, equipped with a continuous action of Gal(@p /Qp)
compatible with its action on XR}' If f: X =Y is a closed immersion of Fj,-schemes inducing an
isomorphism on reduced loci, then by topological invariance of étale cohomology [StaPro, Tag 03SI],
f induces an equivalence D%(X x,n) = DY x,n).

For a separated Z,-scheme X of finite type, the nearby cycles functor

RUx : D’(X,) — D%(X x4 n)
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is defined by RUx(A) = i*j.Aj;, where j : X; — Xz, and i X5 — Xz, are the embeddings
of geometric fibers. If f : X — Y is a morphism of Z,-schemes of finite type, there are natural
transformations

fsioR¥x — RW¥y o fy, (resp. froR¥y — RUx Of;),

which are isomorphisms when f is proper (resp. smooth). Nearby cycles commute with external
products:
RUxx, v = RUx X RVy.
See [SGA7, Exp. XIII] and [I1] for details.
Define

u m X T MO m, G( ) — @Ea T (_l)d“ Tr** ((I) ‘ (1%\11/\/16m ('A,Ajrm,x)) ) )

where Tr®® denotes the semisimple trace in the sense of Rapoport (see [HN, Sec.3.1] and [PZ,
Sec.10.4]), d, = dim(O,,) is the dimension of the I, ,-orbit, and ® € Wy, is any geometric Frobe-
nius element Later we show that A is I, p-equivariant (Lemma 10.1). Via the embedding

(IRIBY
M C F1., (Lemma 6.2), we regard T Thomx @ a function on Flg r, (Fp) = G/I"’7 and we keep
the same notation. The I, ,-equivariance together with X-monodromy implies 7,35, | € H(G,1,x)

([HLS, Proposition 16.6.2]).

Remark 9.3. The factor (—1)%, together with normalizations used later, makes the equality in
Theorem 10.10 hold exactly. Without these normalizations, one only obtains equality up to a scalar
depending on pu.

Similarly, set
i Mb o) > Qe o (<) T (@ (RO (AF 1))
which lies in H(G, I"). Using the decomposition
Aim= DB Ay (B4),

XET(Fp)V
we obtain
+
S G
We expect 7,35, € Z(G,I") (shown in Theorem 10.12). By Lemma 9.2, each 7%, X, should lie in
Z(G, I, x)—this is proved in [HLS, Sec. 16]. Note, however, that centrality of each 7%, |\ does not

by itself imply centrality of the sum 7%, ; one must also verify the Weyl group compatibility stated
in Lemma 9.2. We will check these compatibilities by identifying 7,;%, , with (the translation by
central elements of) certain functions z;° for which the compatibility is built into the definition.

9.3. Construction of central functions via Bernstein varieties. In this section, we construct
central elements in (G, I") and H(G, I, x) (see [HLS, Sec. 13] for details). Let ®; € W, (1) be a
geometric Frobenius corresponding to t € F,((¢) via the Artin map. We work over F,((t)), but the
construction adapts to any local field F.

Recall that the Bernstein center 3(G) is the algebra of endomorphisms of the identity functor on
smooth G(IF,((t)))-representations; equivalently, it is the algebra of regular functions on the Bernstein
variety (whose points are equivalence classes of irreducible smooth G(F,((t))-representations). We
specify Z € 3(G) as a regular function on this variety: for irreducible 7, we write Z(r) € Q.
Elements of 3(G) are also viewed as G-invariant, essentially compact distributions on H(G). Using
the measure dz; with vol(I) = 1, any f € H(G) defines an essentially compact distribution f dzy,
and convolution is compatible: (f % g)dx; = fdx; x gdx;. For Z € 3(G), let 1; € Z(G,I)
(resp. 17+ € Z(G,IT)) be the characteristic function of I (resp. I™). Then there exists a unique
g € Z(G,I) (resp. g € Z(G,I")) with Z x 1y dx; = gdzy (vesp. Z * 11+ dx; = gdxy). See [Haild,
Sec. 3] for more details on these equivalent descriptions.

We first give a construction of central elements using semisimple local Langlands parameters.
Let (r,V) be an algebraic representation of G := G % Wr, (1) (with G over Q, being the dual
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group of G). There is an associated distribution Zy € 3(G). For an irreducible smooth m, let
or  Wr, (1) — LG be the semisimple Langlands parameter of [FS]. Define
(9:2) Zy (1) = Tr(roq(®;) | V7o Tni))

where Zp (4) is the inertia group of F,(()). Since we take the semisimple trace (i.e. on Zp (4)-
invariants), Zy (m) does not depend on the choice of ®;. This yields a distribution in 3(G) by
[Hail4, Proposition 5.7.1, Remark 5.7.2]. For the dominant p € X, (T)" fixed earlier in §8.1, let V,
be the corresponding highest-weight representation of G (when G splits, W acts trivially on Vi

and V), is the usual highest-weight (A?—module; see [Haild, Sec.6.1]). Set
2,0 =2y, * 11+ dzy € Z(G, I,
20 =2y, xeydry € 2(G, 1, x).

HsX
From 1
i = ——— €y,
7)) 2
we obtain
1
(9.3) 208 = ——— % 238 .
¥ )] 2

Remark 9.4. In [HR21, Main Theorem], an analogous construction in H(G,I) uses the Satake
parameter s(m) (for Iwahori-spherical 7) in place of ¢ (®;). Since the support of Zy, * 1;da;
lies in the Iwahori-spherical block, it suffices to specify a scalar on each such representation. The
construction agrees with Zy,, * 17 dxy, as [Li] shows ¢ (®;) = s(m) and ¢ (Zr, (1)) = 1 X Lp, (1) up
to @—conjugacy.

We also give a construction via Bushnell-Kutzko types ([BK]). Since z;%,25°, € H(G,I), their
support sits in the depth-zero block (representations with nonzero I-fixed vectors). Thus they are
determined by their values on equivalence classes of irreducible depth-zero representations.

Let x : T(Fp(2)) — Q, be given by X(av(t)) = x(a), for a € T(Fplt]), v € X.(T), and a the
reduction of a. Since (I, x) is a Bushnell-Kutzko type for the cuspidal pair (T(F,(t)), X) ([Hail2,
Proposition 3.3.1]), any z € Z(G,1,x) is uniquely determined by the scalar by which it acts on
i%(Xn)X as 1 ranges over unramified characters of T(F,((t))). (This scalar is the value of z on any
irreducible subquotient of iG(¥n).)

By definition, 2;° is the unique element of Z(G, I, x) such that z;° dzr acts on iG(Xn)X by

Tr(r%?n(q)t) | VMWXTI(IFPM)) )

for any unramified n. Here @g, is the parameter attached to 7 via local class field theory, compatible
with [FS] by the compatibility with parabolic induction ([F'S, Theorem 1.9.6]).

Similarly, 25° € Z(G,I7") is characterized by: z3°dx + acts on i%(Xn)X by the same scalar, for
all x,n (here dry+ has vol(I1) =1).

Conversely, these characterizations can serve as definitions of our central functions. Only local
class field theory is needed to define p5,. One checks directly that the z;°, are regular and satisfy
the compatibility in Lemma 9.2 ([HLS, Sec. 13.4]); taking average over x then yields 2;* € Z(G, ).

When g is minuscule, one can give explicit values of z;* and z;% on [ *T—double cosets ([HLS,
Propositions 13.5.2]). For our later use, we record the special case G = T' (where every cocharacter
is minuscule).

Lemma 9.5. Let G =T. Then z;°, € Z(G,1,X) is the unique function supported on I u(t) I such
that for a € T(F,[t]),

JI8% .
’ 0, otherwise.

Proof. This is the case G = T of [HLS, Proposition 13.5.2(i)]. One can also check directly that this
function acts on depth-zero characters by the required scalars. (I
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10. THE EQUATION BETWEEN CENTRAL ELEMENTS

We now work toward one of our final goals: to show that the functions 7%, and z;% , though
constructed in different ways, are actually equal (up to a translation by some specific central element
as we will explain later) in Z(G, I, x). This gives an explicit description of Thom, @S aregular function

on the Bernstein variety.

10.1. Constant term homomorphism and geometric constant terms. For general u, it is
difficult to verify 7;;%, . = 2, in Z(G,I,x) directly, since computing their values on I*-double
cosets is hard. Instead, following the strategy of the proof of the test function conjecture for parahoric
local models in [HR21], we compare them after applying the constant term homomorphism

Cgl Z(GaIaX) —>Z(T7IT7X)a

where I is the unique Iwahori subgroup T'(IF,[t]) of T'(F,((¢))). The constant term homomorphism
is induced by a surjective morphism from the depth-zero block of T' to that of G ([Hail2, Sec.5.1])
and is therefore injective on the level of coordinate rings. Since ¢$ is injective, it suffices to check

that

G G
cr (T;j,sm,x) =Cr (ZZ?)()

There is a more concrete description of ¢ via integrals ([Hail2, Sec. 5.4]):

1/2
G (f)(m) = 55 (m)- f(mu) du,
U, ()
where 0p is the modulus character of B and du is normalized so that U(F,[t]) has volume 1. It
is convenient to use a normalization that matches the geometric picture. Consider the Kottwitz
homomorphism for T,

wr : T(Ep(t) = TEp(2))/Ir = Xu(T), m = v,
and let 2pp be the sum of positive roots determined by B. The normalized constant term is

PeF(f)(m) = (=1)Ermrm) E(f)(m),

where (-, -) is the natural pairing X*(T) x X,.(T) — Z.
There is a geometric realization of pcg using hyperbolic localization. Recall the diagram 5.2
attached to a G,-equivariant morphism X/S (with G,,-action étale locally linearizable):

X:I:
D
X0 X.

Using this diagram, define functors (pull-push) as in [Ril9, Definition 2.1]:

L+

L = (@ o)

o (7)), Lyys = (@)oo ()

First take X/S = Mom,c,,/Spec(Qp) (resp. X/S = Mg, o, /Spec(Qp)) and apply these func-
tors to A, (resp. Af,, ). By [Ril9, Theorem 2.6], there is a natural transformation Ly/s— Lj{/s
which is an isomorphism on G,,-equivariant bounded-below complexes. The next lemma shows this
applies in our situation.

Lemma 10.1. Both A, and A}, are I, ,-equivariant and hence Gy, ,-equivariant. Their nearby

cycles are Ip, s-equivariant and hence Gy, s-equivariant.

Proof. We have already seen that A, is I, ,-equivariant (see Remark 8.5 and the preceding dis-

cussion). For Af . use the trivialization in Lemma 7.4: by Lemma 8.10, A}, =~ = A, X F,
and I,,, acts only on the first factor, so .A:[’m,x is Ip, n-equivariant. Another proof is [HLS, Lemma

16.5.3], which works more generally. For nearby cycles, equivariance follows because I,,, is smooth
over Spec(Z,) ([HLS, Proposition 6.4.6]). O
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When working with A, A;myx, and their nearby cycles, we may focus on L} /s We normalize
L} /s to align with the geometric Satake correspondence. By Proposition 5.11, the “4”-diagram in

our case is

MO,m,B,n
% K
MO,m,T,T/ MO,m,G,n-
The connected components of Mg, 7, are indexed by v € X, (T) = Z" with m~ < v; < mt
(denoted v < m), and each component is a single (possibly infinitesimal) point (using k((¢))* /k[t]* =

Z). Write Mg .15, for the component indexed by v, and let Mo m 5.0 = (¢7) " (Mo,m.rm.0)-
For A € D%(Mo m,G.,), compute on each component:

Lhs |y = @) 00)7(A) = Ly, (A)

+.p} are the restrictions

where g}

Mo, B

MO,m,T,n,V MO,77L,G,77~
Define the normalized functor
CTy = @ L;/s,y<<2PB7 V),
v<m

where the outer (-) is the twist on sheaves (8.2), and the inner (-, -) is the pairing X*(T) x X..(T') — Z.
This equals the normalization in [HR21, Definition 3.15] (there v is unbounded and components are
grouped by (2pp,v)). The functor CT),, is the properly normalized one in the following sense, where
Satg (resp. Satr) is the Satake category of G (resp. T'), and w¢g (resp. wr) is a Tannakian fiber
functor [HR21, Definition 3.8].

Lemma 10.2. For any A € Satg, we have CT,(A) € Satp. Moreover, there is a commutative
diagram of neutral Tannakian categories

T,

Satg Satp

]
L res L
Repg, (“G) —> Repg, (“T),

where res is the restriction of representations.

Proof. This is [HR21, Theorem 3.16]. O

Over the geometric special point Spec(F,), by Proposition 5.13 and since we only need the part
of the complex on the open and closed subcheme Mg ., 1.5, we may work with

Mo.m,B,s
% K
Mo,m, 1,5 Mo ,m.cs-
Again the connected components of Mg ,, 7,5 are indexed by v < m, so we define CT; by normalizing
L;/S in exactly the same way. Since M‘f)’m’T is a T-torsor over Mg p, 7, the connected components
of Mom,1n and Mg .15 are indexed by the same set. By Propositions 7.5 and 7.7, we likewise
define CT; and CTL.

Following [HR21], we call CTs and CT% the geometric constant terms, as justified by the next
lemma.
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Lemma 10.3. Via the embeddings Mo m.cs C Flg (Lemma 4.6) and Mo m s C Flp (Lemma
4.10), the functor CTs realizes Pc$ on functions: for any A € D% Mo.m.c.y Xsn) whose semisimple
trace function
50 Moma(Fp) = Qo0 Tr** (@ | (Az))
lies in Z(G,I), we have
PE(TE) = T, a)

where T& 4y s the semisimple trace function for CT5(A) € DY(Mo,m. 1.y %sn). (There is no
(=1)% factor.)

The same holds for CT% using the embeddings M s C F1%, and MG rs C Fl% (Lemma
6.2).

Proof. For CTj, interpret (p+)* as restriction and (¢*), as integration of functions; then check that
the normalization in Pc¢ matches that of CTs, as in [HR21, Lemma 7.2]. The proof for CT% is
identical. 0

10.2. Proof of the main theorem. We will show that the semisimple trace function attached

to CT?(R\I/MB o (Af ) is precisely C%(Tﬁfm’x) (Lemma 10.9). Suppose for now this is known.

), we need an explicit description of CT% RV M o (Af,)). The key input

G (55
To compute c7 (7%,

is that geometric constant terms commute with nearby cycles on bounded below G,,-equivariant
complexes.

Lemma 10.4. There is a natural isomorphism
t + _
CT{(RYpq (A )) = R,

1 X 0,m,T

(CT} (AL, )

T, X

Proof. By Lemma 10.1, this is the special case of [Ril9, Th. 3.3] asserting that nearby cycles commute

with geometric constant terms for bounded below G,,-equivariant complexes. (|
. t t
We now describe R\I'MB,T,L,T(CTAAZM;X))' The sheaf CT, (A}, ) on M§ 7, can be charac-

terized using the canonical section canj ,, from Lemma 7.4.

Lemma 10.5. Via the identification MB,m,T,n = Mom,1n X T, we have a natural isomorphism

t + _
CT, (AL n,) = CT,(A,) X F,.
T00f. emma 8.2 we have a commutative diagram wi artesian squares
P By L 8.2 h tative diag th Cart q
t,+ t,+
t 4q t p t
— _
MO,m,T,n MO,m,B,n 0,m,Gn
f f f
qt pt
Momrny ¢ Mom,By —— Mom.an

which, after the identifications in Lemma 7.4, becomes

q+ Xidp P+ Xidp

Mo,mrg X T Mom,By X T Mom,an x T

f f !

' pt
Momry ¢ Mom,By ————— Mom,ay

with f the projection to the first factor. By Lemma 7.4, Af = = A, KF, on Mg .6, % T, hence

CT, (A, B Fy) = (¢7 xidp) (p* x idg)* (A, B Fy)
= (¢" xidr) ((p7)* AL R Fy)
=(@MNne)A B F
= CT,](.Au) X Fy,
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where in the third line we used the Kiinneth formula [LO, Theorem 11.0.14] for the derived lower
shriek functor. O

To compute nearby cycles, it is useful to have a trivialization over Spec(Z,). By proper base
change for nearby cycles and topological invariance of étale cohomology, we may work with the
reduced structure (M, 7)red (see the discussion at the start of §9.2); we keep the same notation
for complexes on the reduced structure.

Lemma 10.6. The scheme (Mg m T)red 15 a disjoint union of copies of Spec(Z,) indexed by v €
X.(T) with v <m. Quver each such copy, (M, r)rea identifies with Spec(Zy) x T. Moreover, this
identification can be made via a canonical section cans.

Proof. For each v with m™ < v; < m™, set U; := t"iZ,[t]. The tuple (U, ... ,Uy) gives a Z,-point
of (Mo,m,1)rea and thus a closed embedding Spec(Z,) LA (Mo,m,T)red (& section of a separated
morphism). Over a field, we used previously (when normalizing CT,)) that (Grr)req is a disjoint
union of points indexed by arbitrary v € X.(T), so the embeddings Spec(Z,) — (Mo m.T)red
cover (Mg.m 7)red @s a disjoint union. Pulling back to MB,m,T’ we obtain a disjoint union of 7T-
torsors over Spec(Z,), all of which are trivial. Thus (M(t)’m’T)red =\, em (Spec(Zp) X T). For
later computations, we choose canonical sections cang on each Spec(Z,), which amounts to choosing
trivializations of the determinant line bundles attached to (U, . ..,U,); these are provided by [HLS,
Lemma 7.2.1] using the basis e; of V, and were used in the proof of Lemma 8.11. O

The trivialization cang, defined over Spec(Z,), allows an explicit nearby cycle computation. We
must compare it on the generic fiber with cany .

Lemma 10.7. For any v € X.(T) corresponding (as in Lemma 10.6) to a copy of Spec(Z,) x T,
the generic fiber trivializations cany ., and cans,, differ by w;ﬁ*" in the sense that

mt—v

wy xidp

Spec(Qp) x T

identifies the two trivializations as connected components of(./\/lf)ﬂn,Tm)md. Here the left (resp. right)
Spec(Qp) x T is defined using cans ,, (resp. canj ), w;’ﬁ_” = (w;”+_”1,~-~ ,wgl+_””) € T(Q,) is
viewed as a morphism Spec(Qp) — T, and mr is the multiplication on T.

T x T %5 Spec(Q,) x T

Proof. This follows from the constructions: canj ,, sends the distinguished section of the i-th de-

terminant line bundle to 1 € Og (Lemma 7.4), while cans , sends it to wITJr_" € Og ([HLS, Lemma
7.2.1]). O

Lemma 10.8. For v € X, (T) as in Lemma 10.7, the restriction of CT;(A;‘;m’X
fiber Spec(Qy,) x T' of the reduced component indexed by v is

(Kymy ®CT,u(AL) BFy,

where K,  is the rank-1 local system on Spec(Q,) obtained by pulling back F, along Spec(Q,) —

T defined by w;”+_” € T(Qyp) (as in Lemma 10.7) and CT,,,(A,) is the restriction of CTy(A,) to
the reduced component of Mg ., indexed by v.

) to the generic

Proof. By Lemma 10.7, we must compute (wZ’m+ x idr)* m3 (CTy,,(A,) B F); the claim then

follows from Lemma 8.7. O

We can now justify the following identification announced above.

Lemma 10.9. The semisimple trace of Frobenius function (in the sense of Lemma 10.3) attached

to CT;(R\IJM&,",G(AIM’X)) is precisely ¢Z(755, -

Proof. Let V,, be the p-highest weight irreducible algebraic representation of L@G. By [HR21, Corol-
lary 3.12], under geometric Satake, wg(A,) =V, (with wg as in Lemma 10.2). Write Q,,, for the
rank-1 constant sheaf supported on the v-component of Mg 1.,. Since wr(Qy,) = v € X, (T) =
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X*(f), Lemmas 10.4 and 10.2 imply that CTg(R\I/Mé o (A .,)) is supported on those v appear-
ing in V},|vp. By [HR21, Lemma 7.10], for such v we have

(2pB,v) =d, (mod 2).

and dy = 0 there since Schubert strata in Grp have dimension 0. Hence, by Lemma 10.3, the

function attached to CT%(R\I/MB’ o JAL X)) equals Pc§ ((— 1)d”7'u - x) cg( Thom.x)» as the sign

(—1)$?r5:¥) is canceled by (—1)% on the support. O
We can now prove part of our main theorem.

Theorem 10.10. If m™T is divisible by p — 1, then Tiomox = Zpox-

Proof. Since c$ is injective, it suffices to show c% (7 Thoma) = cg(zﬂ ). View both sides as functions

on F1%(FF,). For any v € X.(T) corresponding to a copy Spec(Z,,) x T as in Lemma 10.6, we compare
the two functions on Spec(F,) x T - MG s = Fl5.

First, CT( is, by Lemma 10.9, the semisimple trace function attached to

RV JCTH(AL L)

umx)

On the generic fiber of the reduced V—Component, Lemma 10.8 gives

CT(Af ) = (Kymy ® CTy (AL)) B Fy.

11,1,
Let m(p,v) be the multiplicity of v in V,|5. By Lemma 10.2, CT, ,(A,) = Q;n(ﬂ’u) SO
CT! (A KM ) F, .

umx) v,m,x

Since nearby cycles commute with external products ([II]) and R¥r(F,) = F, ([HLS, Lemma
16.1.1]), we get

R\IIMS (CTt (A+ )) = R\I/Spec(Zp)(KV,m,X)m('u’V) X ]:X'

s, X

By definition of K, ,, y, the semisimple trace of RWgpec(z,) (Kv,m,x) 18

L xe (v =m")(F)) = xov(F)) =1,

Tr*(® | R Kymx)s) =
( | SpeC(Zp)( > X)) {0’ otherwise.

Since the function attached to F, is ' ([HLS, Lemma 15.4.1]), the resulting function is m(u, )
times the function in Lemma 9.5 (with p replaced by v).

Second, c7 (z# ) is the function for 7" induced by the distribution Zy, | (see (9.2)), which follows
from the description of ¢§ on the Bernstein side [Hail2, Sec.5.1] and the compatibility of 7 — ¢
with parabolic induction [FS, Th.1.9.6]. Using this and Lemma 9.5, on the v-component ¢ (5%, )
equals m(u,v) times the same function. Hence the two functions agree. D

Recall that 7"”

,m

is (—1)% times the semisimple trace function attached to RV (A}). The

centrahty of 7%, was conjectured in [HLS]; it now follows directly from Theorem 10.10 at least

when m™ is divisible by p — 1.

Corollary 10.11. If m™ is divisible by p — 1, then 755, € H(G, 1) lies in Z(G, 1) and 7%, =
T ()20

Proof. We have
Taom = D Timx Zz = |T(F,)| -z € Z(G,I*).

We now generalize Theorem 10.10 and Corollary 10.11 to arbitrary m.
Let c € Z(G)(Fp(t)) € G(F,(t)) be central. Define a bijection

ac: H(G(Fy (1)) = H(G(F, ()
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by ac(f)(z) :== f(c™'z). One checks easily that a.(f)*a.(g) = a2 (f*g) for all f,g € H(G(F,(t)),
and that o, preserves H(G(F,(t)),I") (indeed, this works at any level). Hence . induces a
bijection on Z(G(F,(t)),I"). For ¢ = diag(t,...,t), write ay. For n € Z, denote by af the n-th
power of a;.

Theorem 10.12. For any m, the function 7%, € H(G,I") lies in the center Z(G,I) and

S8

’m,+ SSs
Thom = |T(Fp)|e, (Z#(mﬂ)’ where fi(y+y == p — (m™,.

yoo,m™t).
Proof. Tt suffices to prove the stated equality. Set m’ = (m’*,m’~) := (0,m~ —m™). There is a
natural isomorphism

~ ot
tm,m © Momag — Mo, We —> W: =t W,.

This lifts to isomorphisms ./\/lf)’m’G = Mg’m,,G and ./\/ltl’m’G = Mﬁ’m,’G (denoted again ty, ). The
map tp,m sends I, ,-orbits on Mg .. to Ip, y-orbits on Mg s . Using the embedding in Lemma
6.2, we obtain

+

o™ (130) = (o (500) = T80 e = ITEEE
with fi(+) = p— (m™*,...,m™). This implies the claim. O
Remark 10.13. A consequence of Theorem 10.12 is z;° = atp_l(zf; 1)) for pp—1y == p—(p—
1,...,p—1). Moreover, when x = triv is the trivial character we have 2%, = o (szl)’triv) with
pery i= p— (1,...,1); thus in the iwhaori case, a; produces no new central function.

11. EXTENSION TO F,

So far we have been working with [F)-points. Let » > 1 be a positive integer and ¢ := p". Denote
by Qg the unramified extension of Q, of degree r. Let Z, be the ring of integers of Q, and F, the

residue field of Q. In this section, we denote the set of characters with values in @Z of T(F,) (resp.
T(F,)) by T(Fg)* (vesp. T(F,)Y). By I, C G(Fq(t) (resp. I C G(F4(t)) we mean the Iwahori
subgroup of G(F,((t)) (resp. its pro-unipotent radical). We generalize results from previous sections
to F-points. For more details, we refer to [HLS, Sec. 16].

Recall that in §9.3 we constructed z;;° (and, for x € T(F,)", the elements z;° ) for the local
field F,(t). Replacing F,((t) with F¢(t), one similarly obtains 2%, € Z(G(F,(t)),1;}) and, for
X' € T(F,)Y, the elements 255 . € Z(G(F, (1), Ir, x')-

On the other hand, there are two natural ways to generalize 7,;%,, to Fs-points. First, define

Tt Mbm(Fa) — Qs xHel)dﬂTr“(@w(Rw oAt 0n)

[jsmr by replacing A, with

A:’m in the formula above, and note that 7%, = ZxET(FP)V omory-  Viewed as an element
of H(G(F,(t), L,}), we have 75 € H(G(Fy(t)), I, x") where x' = x o Ng_ /¢, and Ng_/r,

o

Fx — F, is the norm map. This implies that when X’ does not factor through the norm map, the
X'-component (in the sense of Lemma 9.2 as we will show that 7%, . is central) of 7,75, . is zero.

Second, recall that the ramified T'(F,)-cover w : M§ | o — MO,m,G was defined as the space of

(p—1)-st roots of the sections ¢;(a;) (Definition 8.1), and that A} | is the x-monodromic component

of At (Lemma 8.10). We now generalize these constructions to ¢. Define a T(IF;)-ramified cover

where we use the same symbols as in §9.2. Similarly, define 7

t,r
MlmG MOmG’

as the space of (¢ — 1)-st roots of the sections ¢;(a;). When r = 1, 7" is just 7. As before, obtain
a sheaf Af7 .= i7" (B}) on MO m,q,- After base change, we get a decomposition on M Q.

,m
+,r
Altjm - @ A/an”

X €T(Fq)*
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where each A:m v s x'-monodromic. Define

Téé, Mo m,c(Fq) — Q;, z+— (1% T (ér | (R‘I'Mé m, G(A::":La)(,)i)) '

tym
Similarly, define 7,73 and note that 725% = >, IET(F,)V T
The following proposition relates 7%, .\ and 77" ..
Proposition 11.1. For any x € T(F,)" and X" = x o Ng_/r,, we have oo = T;:fiyx,.
Proof. This is part of [HLS, Proposition 16.1]. O

Theorem 10.12 generalizes to IF,-points.

Theorem 11.2. For any m, the function 7/755 € H(G(Fy(t), ;") lies in the center and

+
TS = |T(Fg)lo™ (zf;:mﬂm), where fum+y == p— (m*,...,mT).
Proof. Repeat the arguments from the previous sections with p replaced by gq. O

Corollary 11.3. For any m, the function 7%, . € H(G(Fy(t), I,") lies in the center.

Proof. Observing that ' factors through the norm map if and only if any element in its Weyl group
orbit factors through the norm map, the result follows from Proposition 11.1, Theorem 11.2; and
Lemma 9.2. O

12. THE CASE G = GSpy,

In this section, we assume G = GSp,,. Recall that the general symplectic group is defined by
the symplectic form (-,-) on Z?9 with matrix

(%0)

where J is the antidiagonal identity matrix. The proofs of the results in this section are essentially
the same as in the case G = GL,; rather than repeating everything, we focus only on the differences.
We retain the notation from previous sections. In particular, here G = GSp,,, T is its diagonal
torus, and B is the standard “upper” Borel subgroup. Of course, the rank of the ambient space V
is assumed to be 2¢g in this section.

Recall the definition of Mg, ¢ for GSp,, ([HN, Definition 7] and [HLS, Definition 7.1.1]).

Definition 12.1. Let My ,, ¢ denote the moduli space that associates to any scheme S over
Spec(Zy,) the set of chains Wy C Wy C -+ C W,) of Oglt]-submodules of Oglt, ¢, (t + wy,) 1]%
fitting into a commutative diagram with injective morphisms

tmivo[t]os - tm7V1 [t]os T tmivg[t](’)s

| | |

Wo Wy . W,

| T T

thrV0 [t]os - ther [t]os — " Vg [t]os

where
o W, /t™ Vi[t]os Ct™ Vi[t]os/t™ Vi[tlos is locally a direct factor of rank g(m™* —m™) as
an Og-module, and
e W) is self-dual With respect to the pairing gmmt—m= (-,-) and W, is self-dual with respect
to the pairing t=™ —™ (¢t + wp) (-, ).
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For 0 < i < g, define the dual with respect to t=™" ~™ (...} (similarly for t=™" =™ (t +-w,)(-,-))
by
Wit = {v € Og[t,t, (t+wp) % | 7™ ™ (v, w) € Ogt], Vw € Wi}.
For g < i < 2g, set W; = (t + wp) "Wy, ;. Note that W, = (t + w,) "W is assumed, so this
definition makes sense and yields a complete chain Wy = Wy C -+ C Way = (t + wp) ' Wp). The
following lemma is used implicitly in [HLS].

Lemma 12.2. The construction of complete chains We = (Wy C --+ C Way = (t + wp) W)
defines a closed embedding Mo m,c C Mom,GLa, -

Proof. Since (-,-) is a perfect pairing, for g < i < 2g the quotient
+ B +
Wl/tm Vi[t]os ct™ Vz[t]os/tm Vi[t]os

is locally a direct factor of rank rkg(t™ Vo,_;i[t]os/Wag—i) = g(m* —m™) as an Og-module, so
the embedding is well-defined. The additional requirement that W, and W, are self-dual is a closed
condition. (]

Remark 12.3. Once a G,,-action is defined on Mg ,, ¢ similarly to before, Lemma 5.6 together
with Lemma 12.2 implies that the G,,-action on My, ¢ is Zariski locally linearizable, since the
embedding Mg . C Mo’m,GLQH is G,,-equivariant. Hence hyperbolic localization produces repre-
sentable objects in this section.

Let 2m := (2m™*,2m™). To define the multiplication map mult : Mg ¢, X Momec, —
Mo omc, (induced from multiplication on G,,), we use the following equivalent definition of

Moxm7G7n'

Lemma 12.4. The moduli space Mo m,, associates to any scheme S over Spec(Z,) the set of
Og-lattices Uy C Os((t) such that t™ Og[t] € Uy C t™ Og[t].

Proof. This is the equivalent definition (i) in Definition 3.1. O

Definition 12.5. The multiplication map mult : Mg, g,, X Mo m.c,, = Mo,2m,G,, is defined as
follows. For any scheme S over Spec(Z,) and any Uy, U € Mg m.c,, as in Lemma 12.4, set
mult (Uo, Up) = Uy Rost] Up.

This is well-defined since 2™ Og[t] € Up Qo Uy C 2™ Oglt] and Uy @ogpg Ul is Ost]-
projective.

m

Using this multiplication map, we define Mg p, 7.

Definition 12.6. Let Mg, 7 be the closed subscheme of M, . G2 = (M07m,¢;m)29 that associates
to any scheme S over Spec(Z,) the set of 2g-tuples (Ui, ...,Usq) such that mult(U;, Usgy1—i) =
tm +m” Og[[t] © Og((t), where mult is defined in Definition 12.5.

Remark 12.7. Although the maximal split torus 7' C G is isomorphic to GJ;!, the scheme Mom, T
is not defined to be isomorphic to M, = ~o+1. In fact, Mo 1 = M, gg , since the first g entries
determine the whole 2g-tuple; this corresponds to the diagonal torus of Sp,,.

Lemma 12.8. The restriction of the embedding M, ., g2 C Mo, m,GL,, (Definition 4.8) to Mo m 1
factors through Mo ;. C Mom,aL,, (Lemma 12.2), and the resulting diagram

Mo, r —= Mg, G20

l |

Mo,m,g —= Mo,m,GLa,
is Cartesian.

Proof. This follows from the fact that the restriction of the symplectic form (-, -) to the (,2g+1—1)
components of V corresponds to multiplication of elements. (I
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As in Lemma 3.3 (resp. Lemma 3.4), the R-valued points of the ind-scheme Grg (resp. Flg) can
be described by lattices £ (resp. t-periodic complete lattice chains £,) in R((#)?9 such that £+¢ = £
(resp. £;¢ = £, for all i € Z) for some ¢ € R((t)*, where £ denotes the dual with respect to
e

gle={z e R(#)* | ¢ Y(x,v) € R[t] Vv € £}.
Given a lattice £ (resp. a t-periodic complete lattice chain £,) in R((t)2%9, if £ = £+ = gle
(resp. L‘j” = Sj” = £_; for all i) for some c1,c2 € R(t)*, then £& € R[t]*. Thus we obtain
the similitude map Grg — Grg,, (resp. Flg — Grg,,) by £ — ¢1 (resp. £4 — c¢1). Forgetting
self-duality gives natural embeddings Grg C Grgr,, and Flg C Flgr,,. As in Lemma 4.4 (resp.
Lemma 4.6), there is a natural closed embedding Mg .., C Grg (resp. Mom.q,s C Flg).

Remark 12.9. Remark 12.7 and Lemma 12.8 may look surprising at first glance, but this is tied to
the choice of the pairing g=mT—m” (+,+) in Definition 12.1, which makes Mg, ¢ more “reduced” in
the following sense. For simplicity, assume m*™ = —m™ and work over the generic fiber. Denote by
[ : Grg — Grg,, the similitude map. Then the restriction f|a,,, ., factors through (Grg,, )rea C
Grg,,. Concretely, writing Grg,, as a disjoint union of infinitesimal points indexed by Z = X.(G.,),
the image of f| ., .., lies on the point ptg indexed by 0 € Z and in fact factors through the reduced
point Spec(Q,) = (pto)rea C pt. In this case, the image of the embedding Mg ¢, C Grg is exactly
the closed subscheme of Grsp, C Grg bounded by m. For general m, the image of f|umq,,. ., les
in the reduced point indexed by m* 4+ m™.
Although GL2 = GSp,, the scheme Mo, csp, is defined differently from My qr, in that:

® Mo, m,Gsp, lies in a single connected component indexed by mT +m~ € Z; and
® Mo m,asp, is more “reduced” in the sense above.

Definition 12.10. Let My, g denote the moduli space that associates to any scheme S over
Spec(Z,) the Og[t]-lattices t™ Vo[t]o. € Wy C t™ Vo[t]o. such that
o Wo/t™ Voltlos C ™ Vo[tlos/t™ Voltlos is locally a direct factor of rank g(m* —m™) as
an Og-module; and
o for Wy, :== Wy N Os(t)" (see Remark 4.11; in particular, Wy o = 0 and Wy, = W), there
is an exact sequence Wy ;—1 — Wy, — Q; where the first arrow is the inclusion and the
second is the projection to the i-th component, such that as the image of the projection,
the Og/[t]-module ™" Og[t] € Q; C t™ Og]t] defines a point of Mo.m,cr, (S) (equivalently,
Q;/t™ Oglt] C t™ Oglt]/t™" Oslt] is locally a direct factor as an Og-module); and
e W) is self-dual with respect to the pairing gmmt—m= (y ).

Lemma 12.11. There is a natural closed embedding Mg m B C ./\/loﬂn,BGLQg , where Bgr,, denotes
the upper Borel of GLag.

Proof. Compare Definition 4.12 with Definition 12.10. Fixing the rank of Wy /t™ V[tlo, is an
open-and-closed condition. Requiring W, to be self-dual is a closed condition. O

Lemma 12.12. The natural embedding Mo m,p C MO,m,BGng C Mom,cL,, factors through
Mom,c C Mom,GL,,, and the diagram

Mo.m.B —— Mo,m.Bar,,

| |

Mo,m,c —= Mom,GLa,
is Cartesian.

Proof. Recall from Lemma 4.17 that W; = Wy + (t + w,) " "Wo;. We must check W; = (¢ +
wy) W, for g <i < 2g.
Observe that ngfh = Wo,29—i, where for W C W, we set

Werth .— L e Wy | (w,v) =0 Vv e W}.
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In particular, (Wy i, Wo 29—i) = 0, which implies
t_er_"f (t+ ’U)p)<WZ‘, ng,i> = t—m*—m7 (t + wp)<W0 + (t + wp>_1W0,i, Wo + (t+ wp)_1W0’297i>

CH™ T (4 w,) (W, (4 wy) ™ W)
= Os[t].

Thus W; C (t + w,,)*legfi. Since tm+V2g_i[t]os C Way—i C t™ Vau_i[tlos, we clearly have
" Viltlos C (t+wy)"IWi,_, C ™ Viltlos. Now W;/t™ Viltlos C (t+wp) "\ Was_,/t™ V;ltlog
are projective Og-modules of the same rank, and (¢ + wp)*1W$7i/Wi is Og-projective; hence

Wi =+ wp)*lVVj;]_i. O
We define the morphism Mg B — Mo m,7 as the morphism induced by the next lemma.

Lemma 12.13. The restriction of the morphism MO,m,BGL2q = M .c20 to Mom,B C MO,m,BGL2q
factors through Mo C M . 20 ' .

m

Proof. We must check mult(Q;, Qog11-;) = gmt +m” Os[t]. By Lemma 12.12, Wg’flﬁh = Wo,2g—i, SO
the pairing gmmt—m (-,-) induces a pairing on Wy ; /Wy i—1 = Q; and Wy 2g+1—i/Wo,29—i = Qag+1—i
given by =M =M times multiplication of elements. Passing to the induced pairing on the quotients
Q;/t™ Oglt] C t™ Og[t]/t™ Og[t] and  Qagy1_i/t™ Oglt] Ct™ Oslt]/t™ O],
we obtain
(Qi/t™ Os[t)"™" = Qagr1-i/t™ Oslt],
where °'P' is defined using the induced pairing on t™ Oglt]/ " Og [t]. This implies

mult(Qi, Q2g+1—i) = tm++m_ Osﬂt]]

To define T-torsors, recall the following lemma.

Lemma 12.14. For any We € Mg m.c(S), there is a canonical isomorphism
Wi—1 Wi Wag_i . Wog11—i }

12.1 Det
(12.1) ¢ tmtV,_q[t] TV Vo ilt] 7 Vagi 4t

~ Og

:| Rog Det [

sending the distinguished section a; ® azgy1—; on the left to the section w;"'+_m7 on the right. This

family of isomorphisms is symmetric in the sense of [HLS, Sec.4.1].
Proof. This is [HLS, Lemma 7.2.3]. O

Definition 12.15. Let MB,m,G be the moduli space over My ,, ¢ parametrizing isomorphisms

Wi_l - Wl
tm+Vi,1[t](gS tmty; [t](gs
such that there exists a unit u € O/TAO . with the property that, for all 7, the diagram

i : Lg::Det[ }L}@S

(122) L;®Ll2g+1—i = OMo,m

~

<Pz‘®§029+11¢2 Zixu

OMo,m Y (9/\/10,mnr$> OMo.m
commutes, where mult : Onq, . @ Ortg,e — OM,,,,, 1S multiplication and can is the symmetric
family of Lemma 12.14. Since can is symmetric, M{ ,,  is a T-torsor over Mo G-
Define M§ ,,, - and MG, p by pulling back the T-torsor Mg,  along the embeddings Mo m 1 C
Mo m.B C Mo m,g from Lemma 4.17, Lemma 12.8, Lemma 12.12 and thus obtaining embeddings
Mé,m,T - Mé,m,B c Mé,m,G'

As in the GL,, case (Lemma 7.4), these T-torsors are trivial on the generic fiber.
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Lemma 12.16. The T-torsor M{ ., o, — Momgy is trivial. Moreover, there is an Iy ;-
equivariant, hence Gy, ,-equivariant, canonical section cany , trivializing this T-torsor. The anal-
ogous statements hold with G replaced by T or B. For the definition of I,,, in this case, see [HLS,
Definition 6.4.1].

Proof. The proof is identical to that of Lemma 7.4. Note that the unit v in Definition 12.15 can be

—m

taken to be w™ , which is invertible on the generic fiber. O

p

With these ingredients in place, all definitions and results from previous sections generalize to
the case G = GSpy,.
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