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Abstract. This paper is a continuation of [HLS]. Building on the enlarged local models of GLn

and GSp2g at Γ1(p)-level constructed in [HLS], and employing nearby cycles on these models, we

prove that the function τssµ in the center of the Γ1(p)-Hecke algebra, defined geometrically via
the semisimple trace, coincides with the function zssµ obtained from semisimple local Langlands

parameters [FS] and the theory of the stable Bernstein center [Hai14]. This provides the first

verification of the generalized test function conjecture at Γ1(p)-level, valid for all cocharacters µ.
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1. Introduction

Integral models control many arithmetic properties of Shimura varieties. Fix a prime p and a
level structure Kp at p. It is important to construct an integral model over Spec(OF ), where F is
the completion of the reflex field at a finite place above p. When Kp is an Iwahori (or more generally
a parahoric) subgroup in the sense of [BT], integral models are known for a large class of Shimura
varieties: for PEL type, see [RZ96]; for abelian type, see [KP, KPZ]. One can also work in the p-
adic setting: the existence of canonical p-adic integral models, conjectured by Pappas–Rapoport, has
been established to varying degrees in [PR, D, DY, DHKZ]. Among the known cases, a prototypical
example is the Siegel modular stack A0 of principally polarized abelian schemes of dimension g over
Spec(Zp) with Iwahori level at p. This will be our motivating example for passing to deeper levels.

When Kp is a pro-p Iwahori subgroup (the pro-unipotent radical of an Iwahori subgroup), we say
that the Shimura variety has Γ1(p)-level structure at p. In this setting, far fewer results are known;
see, for instance, work on certain unitary Shimura varieties [HRa, S] and on the Siegel case [HLS, S].
The Hilbert–Siegel case is studied in [Liu]. In [HLS], the Γ1(p) analogue A1 of A0 is constructed as
a modular stack using Oort–Tate theory [OT]. Geometric properties of A1 have been investigated
in [HLS, Mar].
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Fellowship (2025) at the University of Maryland, and NSF grants DMS-2200873 and DMS-1801352.
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To address the bad reduction of A0, de Jong introduced a local modelM0 in [dJ]. The scheme
M0, defined in terms of linear algebra data, is projective over Spec(Zp) and is étale-locally isomor-
phic to A0; hence it captures the same singularities. Nearby cycles on A0 can be related to those
onM0 via the local model diagram. For generalizations and applications in the parahoric case, see
the survey [PRS].

Using the theory of determinant line bundles [KM, Knud] and their distinguished sections [HLS,
Sec. 2], a local model M1 for A1 is constructed in [HLS] with properties parallel to those of M0.
In particular,M1 is étale-locally isomorphic to A1, and there exists a local model diagram relating
nearby cycles on A1 and M1. To relate pushforwards of nearby cycles, [HLS, Sec. 5] introduces
rigidified local models by trivializing determinant line bundles and taking (p−1)-st roots of their
distinguished sections (note that our notation differs from [HLS], where (−)+ is used in place of
(−)t):

Mt
1 −→Mt

0 −→M0.

The morphismMt
1 →Mt

0 is smooth-locally isomorphic to A1 → A0, allowing us to compare, for a
prime ℓ ̸= p,

π∗RΨA1
(Qℓ) and π∗RΨMt

1
(Qℓ),

for π : A1 → A0 or π :Mt
1 →Mt

0. Thus, to study pushforwards of nearby cycles, it suffices to work
withMt

1 →Mt
0 →M0.

There are “enlarged” versions of M0 [HN, HLS] whose generic fibers carry interesting sheaves
beyond Qℓ. These enlarged local modelsM0,m are indexed by m = (m+,m−) with integers m− <
m+. For m = (1, 0) one recovers the usual local modelM0. Variants exist for both G = GLn and
G = GSp2g, denotedM0,m,G. Unless stated otherwise, we focus on G = GLn in this introduction,
noting that the symplectic case has analogous statements.

The generic (resp. special) fiber ofM0,m,G embeds naturally into the affine Grassmannian GrG,Qp

(resp. the affine flag variety FlG,Fp) via the lattice (resp. lattice-chain) description [Go, Zhu16]. Thus
one may view M0,m,G as a truncated deformation interpolating between FlG,Fp and GrG,Qp . A
loop–group uniformization in the sense of [PZ] shows that these fiberwise embeddings can be made
integrally [HLS, Sec. 9.5].

There are also enlarged versions of the rigidified models, yielding

M t
1,m,G −→M t

0,m,G −→M0,m,G.

Here M t
0,m,G can be viewed as a truncated deformation from the enhanced affine flag variety

Fl tG,Fp
—which parametrizes lattice chains together with trivializations of consecutive cokernels—to

a T -torsor (with T the diagonal torus of G) over GrG,Qp . Using the embedding of the special fiber,
I+–equivariant nearby cycles on M t

0,m,G produce elements of the Γ1(p) Hecke algebra H(G, I+).
One of the main results of this paper, made precise below, is that nearby cycles arising from natural
constructions yield central elements of H(G, I+), and that the action of these central elements on
irreducible smooth representations of G(Fp((t))) can be described explicitly. This was established
for minuscule cocharacters in [HLS]; here we generalize it to arbitrary cocharacters.

It is worth emphasizing a key difference from the Iwahori case: at present there is no known
loop–group uniformization forM t

0,m,G. The obstruction is that natural candidates produce generic

fibers isomorphic to GrG,Qp itself, rather than to a T -torsor over GrG,Qp , which is what the Γ1(p)
rigidification demands.

1.1. Formulation of the main result. In this paper, we are going to prove a case of the test
function conjecture in [Hai14].

Let G be either GLn or GSp2g over Spec(Z); unless stated otherwise, we focus on G = GLn. Let
T denote the diagonal torus of G and B the “upper” Borel subgroup. For a scheme over the ring of
p-adic integers Zp, write η (resp. s) for its generic (resp. special) fiber. Fix an arbitrary uniformizer
wp ∈ Zp. We use this wp in the construction ofM0,m,G (Definition 4.1). When clear from context,
we write G for G(Fp((t))). For a precise setup, see §2.

Recall the rigidified local models

Mt
1,m,G

π−−→Mt
0,m,G −→M0,m,G,
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which are schemes over Spec(Zp), where m = (m+,m−) is the truncation index as before. The
scheme Mt

0,m,G is a T -torsor over M0,m,G parametrizing consecutive determinant line bundles

(Definition 6.1). The mapMt
1,m,G →Mt

0,m,G parametrizes (p−1)-st roots of distinguished sections

of these determinant line bundles (Definition 8.1); it is a T (Fp)-ramified cover and is finite étale on
the generic fiber.

Fix a dominant cocharacter µ ∈ X∗(T )
+. Let Aµ (§8) be the usual normalized intersection

complex on GrG,Qp
attached to the Schubert stratification; this sheaf plays a central role in the

geometric Satake equivalence [Lu, Gi, BD, MV, Ri14, RZ15, Zhu16]. For m sufficiently large (as we
shall always assume), the embedding M0,m,G,η ↪→ GrG,Qp (Lemma 4.4) allows us to view Aµ as a
perverse sheaf onM0,m,G, which we continue to denote by Aµ.

Write B+µ for the pullback of Aµ along the T -torsorMt
0,m,G →M0,m,G. The analogue of Aµ on

Mt
0,m,G is then

A+
µ,m := π∗π

∗(B+µ ).
Define

τssµ,m :Mt
0,m,G(Fp)→ Qℓ, x 7−→ (−1)dµ Trss

(
Φ | (RΨMt

0,m,G
(A+

µ,m)x̄)
)
,

where Trss denotes the semisimple trace in the sense of Rapoport (see [HN, Sec. 3.1] and [PZ,
Sec. 10.4]), dµ = dim(Oµ) is the dimension of the Schubert stratum attached to µ, RΨ is the nearby
cycle functor (§9.2), and Φ ∈ WQp (the Weil group of Qp) is any geometric Frobenius element. Let
I ⊂ G(FpJtK) be the Iwahori subgroup corresponding to B, and let I+ be its pro-unipotent radical.
One checks that RΨMt

0,m,G
(A+

µ,m) is I+-equivariant (indeed, twisted I-equivariant in a suitable

sense; see Lemma 10.1). Via the embeddingMt
0,m,G,s ↪→ FltG,Fp

(Lemma 6.2), we may view τssµ,m as

an element of the Γ1(p) Hecke algebra H
(
G(Fp((t))), I

+
)
(see §9.1), and we keep the same notation

for this function.
To describe the action of τssµ,m on irreducible smooth representations of G(Fp((t))) with coeffi-

cients in Qℓ, we introduce a central function zssµ . Let (rµ, Vµ) be the µ-highest weight algebraic

representation of LG = Ĝ ⋊WFp((t)) (with the dual group Ĝ defined over Qℓ and WFp((t)) the Weil
group of Fp((t))). In our split setting, WFp((t)) acts trivially on Vµ, so Vµ is the usual highest-weight

Ĝ-module; see [Hai14, Sec. 6.1]. There is an associated distribution Zµ ∈ Z(G) (see [HLS, Sec. 13]
and §9.3 for details), where Z(G) denotes the Bernstein center of G(Fp((t))). For an irreducible
smooth representation π, let φπ : WFp((t)) → LG be its semisimple Langlands parameter [FS], and
set

Zµ(π) = Tr
(
rµ
(
φπ(Φ

♭)
) ∣∣∣ V rµ(φπ(IFp((t))))

µ

)
,

where IFp((t)) is the inertia subgroup of Fp((t)) and Φ♭ ∈ WFp((t)) is a geometric Frobenius element.

This distribution yields an element in the center Z(G, I+) of H(G, I+). (Alternatively, zssµ can be
constructed using local class field theory and depth-zero type theory [BK, Hai12]—without invoking
[FS]—but the construction above works uniformly at any level.) Up to a scalar, zssµ is the test
function: it is the expected function (cf. [Hai14, Conjecture 6.1.1]) inserted into the point-counting
formula in the Langlands–Kottwitz method for computing the semisimple Lefschetz number.

The following theorem generalizes [HR21, Main Theorem] to the Γ1(p)-level and can be regarded
as a nearby-cycle construction of the test function.

Theorem 1.1 (Test function conjecture for Γ1(p) local models). For any m, the function τssµ,m
belongs to the center of H

(
G(Fp((t))), I

+
)
, and

τssµ,m = |T (Fp)|αm+

t

(
zssµ(m+)

)
in H

(
G(Fp((t))), I

+
)
,

where |T (Fp)| is the cardinality of T (Fp), µ(m+) := µ − (m+, . . . ,m+), and t is the parameter of
Fp((t)). The operator

αt : H(G, I+) −→ H(G, I+), αt(f)(z) = f
(
(diag(t, . . . , t))−1z

)
.

Moreover, when m+ is divisible by p− 1 we have αm+

t

(
zssµ(m+)

)
= zssµ , and hence

τssµ,m = |T (Fp)| zssµ .
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The factor |T (Fp)| in the theorem comes from our normalization and may be ignored (see Exam-
ple 1.4).

In the Iwahori case, the identity αm+

t

(
zssµ(m+)

)
= zssµ holds for everym+. Consequently, τssµ,m = zssµ

for all m, in alignment with [HR21, Main Theorem]. This implies that τssµ,m does not depend on
m; this is immediate from the fact that the sheaf Aµ itself is independent of m (the natural closed
embeddings for different truncation indices yield a single uniform sheaf).

In contrast, at Γ1(p)-level the operator αt is genuinely needed. The sheaf A+
µ,m onMt

0,m,G does

depend on the truncation index m: although natural embeddings between the schemes Mt
0,m,G

exist, there need not be an embedding Mt
1,m,G ↪→Mt

1,m′,G unless m+ −m′+ is divisible by p − 1

(for GSp2g this also forces m−−m′− to be divisible by p−1). For a fixed µ, varying m can therefore
produce different functions—indeed, at most p− 1 of them (see Example 1.4 and §8.2).

The previous theorem extends to Fq-points. Before explaining the extension, we outline the
strategy of the proof of Theorem 1.1. The argument proceeds componentwise. Let T (Fp)

∨ be the

set of characters χ : T (Fp) → Q×
ℓ . By [Hai12], any z ∈ Z(G, I+) admits a decomposition (sum or

average, depending on normalization)

z =
∑

χ∈T (Fp)∨

zχ,

where zχ ∈ Z(G, I, χ) lies in the center of the χ−1–equivariant Hecke algebra H(G, I, χ) ⊂ H(G, I+)
of bi–χ−1–equivariant functions (here we view χ as a character of I → I/I+ = T (Fp); see §9.1).
Since zssµ ∈ Z(G, I+), we write zssµ,χ for its χ–component (in the “average” sense).

Analogously (see [HLS, Sec. 14] and also Lemma 8.10 for a simpler description), there is a de-
composition on the sheaf side

A+
µ,m =

⊕
χ∈T (Fp)∨

A+
µ,m,χ,

where each A+
µ,m,χ is χ–monodromic [Ve, LY, Gou, Zhu25, HLS], i.e. equivariant with respect to

the rank–one multiplicative local system Fχ [Lau]. The complexes

RΨMt
0,m,G

(
A+

µ,m,χ

)
are again χ–monodromic and carry a twisted I–equivariance (distinct from the usual left I–action on
the enhanced affine flag variety), which is used to deduce bi–χ−1–equivariance. Taking semisimple
traces yields functions

τssµ,m,χ ∈ H(G, I, χ),

and hence

τssµ,m =
∑

χ∈T (Fp)∨

τssµ,m,χ.

A key input from [HLS] is that, for any m and χ, the function τssµ,m,χ is central in H(G, I, χ), as
expected.

The main step in the proof of Theorem 1.1 is to show that, when m+ is divisible by p− 1,

τssµ,m,χ = zssµ,χ for all χ.

Following the philosophy of [HR21], we verify this by comparing constant terms:

cGT
(
τssµ,m,χ

)
= cGT

(
zssµ,χ

)
,

where

cGT : Z(G, I, χ) ↪→ Z
(
T, T (Fp[[t]]), χ

)
is the (injective) constant–term morphism [Hai12, Sec. 5.4], given by

cGT (f)(m) = δ
1/2
B (m) ·

∫
U(Fp((t)))

f(mu) du,

with U the unipotent radical of B.
Up to normalization, the constant–term morphism cGT can be realized geometrically via hyperbolic

localization [Ri19, HR20, HR21] for a suitably twisted Gm–action onMt
0,m,G (the usual left action
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on FltG,Fp
has no fixed points); see §7 for definitions. The following theorem is an analogue of [HR21,

Proposition 3.4, Proposition 4.7] at the Γ1(p)–level. In what follows,M0,m,T (resp.M0,m,B) denotes
the analogue ofM0,m,G for T (resp. B); it is described in terms of lattices so that the corresponding
T–torsor is defined naturally, and (−)t denotes the associated T–torsor. In the theorem below, the
top rows of the diagrams arise functorially from the natural maps T ← B → G. See §4–§7 for
precise definitions.

Theorem 1.2. Over Spec(Qp), there is a natural commutative diagram

Mt
0,m,T,η Mt

0,m,B,η Mt
0,m,G,η

Mt,0
0,m,G,η Mt,+

0,m,G,η Mt
0,m,G,η

=

qt,+ pt,+

in which all vertical maps are isomorphisms. Here (−)0 denotes the Gm-fixed locus and (−)+ the
attractor.

Similarly, over Spec(Fp), there is a natural commutative diagram

Mt
0,m,T,s Mt

0,m,B,s Mt
0,m,G,s

Mt,0
0,m,G,s Mt,+

0,m,G,s Mt
0,m,G,s

=

qt,+ pt,+

in which all vertical maps are isomorphisms.

Unlike the Iwahori case [HR21, Proposition 4.7], in the Γ1(p) setting the vertical maps are iso-
morphisms (rather than merely open-and-closed immersions), even on the special fiber. This makes
the Γ1(p) case slightly better—though for applications the distinction is immaterial. Up to nor-
malization, the constant–term morphism cGT can be realized (Lemma 10.9), via the sheaf-function
dictionary, as

cGT ≃ (qt,+)! (p
t,+)∗,

and this functor commutes with nearby cycles on Gm–equivariant sheaves [Ri19], such as A+
µ,m,χ.

Consequently, all computations may be carried out onMt
0,m,T , whose reduced structure is compar-

atively simple (see Example 1.4).
Now we explain how to extend Theorem 1.1 to Fq–points, where q = pr with r ≥ 1. Let

Ir ⊂ G(Fq[[t]]) be the corresponding Iwahori subgroup and I+r its pro-unipotent radical. There are
two natural constructions of nearby cycles in this setting. The need for two constructions stems
from the fact that, although in the Iwahori case the double coset spaces agree

I\G(Fp((t)))/I = Ir\G(Fq((t)))/Ir,

this compatibility fails at Γ1(p) level:

I+\G(Fp((t)))/I
+ ̸= I+r \G(Fq((t)))/I

+
r .

First construction. For any χ ∈ T (Fp)
∨, define

τssµ,m,r,χ :Mt
0,m,G(Fq) −→ Qℓ, x 7−→ (−1)dµ Trss

(
Φr |

(
RΨMt

0,m,G
(A+

µ,m,χ)x̄
))

.

Set τssµ,m,r :=
∑

χ∈T (Fp)∨
τssµ,m,r,χ. Note that this sum only ranges over T (Fp)

∨, so from the point of

view of T (Fq)
∨ (the set of characters of T (Fq)) some components are missing.

Second construction. Define a T (Fq)–ramified cover

πr : Mt,r
1,m,G −→M

t
0,m,G
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as the space of (q − 1)–st roots of the distinguished sections (for r = 1 this is π). Set

A+,r
µ,m := πr

∗π
r∗(B+µ ) onM+

0,m,Qp
.

After base change, we obtain onM+
0,m,Qq

a decomposition

A+,r
µ,m =

⊕
χ′∈T (Fq)∗

A+,r
µ,m,χ′ ,

where each A+,r
µ,m,χ′ is χ′–monodromic. Define

τ r,ssµ,m,χ′ :Mt
0,m,G(Fq) −→ Qℓ, x 7−→ (−1)dµ Trss

(
Φr |

(
RΨMt

0,m,G
(A+,r

µ,m,χ′)x̄
))

.

Then set τ r,ssµ,m :=
∑

χ′∈T (Fq)∨
τ r,ssµ,m,χ′ .

Spectral side. Replacing Fp((t)) by Fq((t)) in the construction of zssµ yields a central function zssµ,r.

Both constructions produce central functions, and their relationship is summarized in the follow-
ing theorem.

Theorem 1.3. For any m, the function τ r,ssµ,m ∈ H
(
G(Fq((t))), I

+
r

)
is central, and

τ r,ssµ,m = |T (Fq)|αm+

t

(
zssµ(m+),r

)
, where µ(m+) := µ− (m+, . . . ,m+).

Moreover, for any χ ∈ T (Fp)
∗ and χ′ := χ ◦NFq/Fp

where NFq/Fp
is the usual norm map, we have

τssµ,m,r,χ = τ r,ssµ,m,χ′ ,

and τssµ,m,r ∈ H
(
G(Fq((t))), I

+
r

)
is central.

Moreover, if r′ | r, then the sheaf A+,r′

µ,m is naturally a direct summand of A+,r
µ,m, and the two

sheaves induce the same function on Fpr′–points (whereas on Fpr–points they may differ, as noted

above). If one wishes to recover zssµ,r uniformly for all r, it is natural to consider the directed limit

of the system {A+,r
µ,m}r as r varies.

We end this subsection with an example that exhibits all the new phenomena at the Γ1(p)-level,
except for the extension to Fq-points.

Example 1.4. In this example we treat the simplest case. Assume G = T = Gm, take µ to be the
trivial cocharacter, and work with Fp-points. We have

I = FpJtK×, I+ = 1 + tFpJtK,

and

|T (Fp)| = p− 1.

The reader may ignore this factor of p− 1, which arises from our normalization convention that zssµ
is the average rather than the sum of the zssµ,χ’s. In this situation

zssµ = 1I+ and zssµ,χ = eχ,

where eχ is the idempotent supported on I which, on I, is the function χ−1, viewed as a character
via the quotient

I/I+ ≃ T (Fp) = F×
p .

First, consider the truncation index m = (0,−1). Then the reduced scheme (M0,m,G)red (see Def-
inition 4.8 and Lemma 10.6 for details) consists of two disjoint copies of Spec(Zp). One component
corresponds to the middle term in

Zp[t] ⊂ Zp[t] ⊂ t−1Zp[t],

and the other to the middle term in

Zp[t] ⊂ t−1Zp[t] ⊂ t−1Zp[t].

We denote these components by Spec(Zp)0 and Spec(Zp)−1, respectively. In this case Aµ is simply

the rank-one constant sheaf Qℓ on Spec(Qp)0, the generic fiber of Spec(Zp)0.
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The reduced structure (Mt
0,m,G)red of the TZp

-torsorMt
0,m,G is the disjoint union of two copies

of TZp , one lying over each copy of Spec(Zp). We denote them by T0,Zp and T−1,Zp . We trivialize
the T -torsor so that, via the embedding (Lemma 6.2)

Mt
0,m,G,s ↪→ Fl tG,Fp

,

the points 1 ∈ T0,Zp
(Fp) and 1 ∈ T−1,Zp

(Fp) map to

1I+ ∈ Fl tG,Fp
(Fp) = Fp((t))

×/(1 + tFp[[t]]) and t−1I+ ∈ Fl tG,Fp
(Fp),

respectively.

For any character χ : T (Fp) = F×
p → Q×

ℓ , the sheaf A+
µ,m,χ equals

Fχ,Qp
on T0,Qp

,

the generic fiber of T0,Zp
, where Fχ,Qp

is the rank-one local system defined by the connected finite
étale cover

TQp

a7→ap−1

−−−−−−→ TQp

with Galois group T (Fp) and character χ. This is because over T0,Qp , the morphism Mt
1,m,G →

Mt
0,m,G can be identified with TQp

a 7→ap−1

−−−−−−→ TQp
(see Lemma 10.7 for details). It is also known

([HLS, Lemma 14.1.1]) that
RΨTZp

(Fχ,Qp
) = Fχ,Fp

,

the Fp-analogue defined similarly. Taking the (usual or semisimple) Frobenius trace on Fχ,Fp
yields

the function eχ ([HLS, Lemma 14.4.1]). Hence τssµ,m,χ is the function eχ, and therefore

τssµ,m = (p− 1) 1I+ = (p− 1) zssµ .

Moreover, if one works with the truncation index n = (n+, n−) where n+ ≥ 0 and n+ is divisible by
p − 1 (with the same µ), then over T0,Qp

the morphismMt
1,m,G →Mt

0,m,G can be identified with
the composite

TQp

a 7→ap−1

−−−−−−→ TQp

a 7→aw−n+

p−−−−−−−→ TQp

(again see Lemma 10.7). One checks that we still obtain Fχ,Qp
on T0,Qp

and thus the same equality.
Now consider the truncation index m′ = (1, 0). By a similar analysis, (Mt

0,m′,G)red is the disjoint

union of two copies of TZp
, which we denote by T0,Zp

and T1,Zp
. For any character χ : T (Fp)→ Q×

ℓ ,

the sheaf A+
µ,m′,χ is Fχ,Qp

⊗Kχ on T0,Qp
, where Kχ is the rank-one local system on Spec(Qp) obtained

by restricting Fχ,Qp
to the point wp ∈ T (Qp). This is because now over T0,Qp

, the morphism
Mt

1,m′,G →Mt
0,m′,G can be identified with the composite

TQp

a 7→ap−1

−−−−−−→ TQp

a 7→aw−1
p−−−−−−→ TQp .

Concretely, Kχ corresponds to the character

β : Gal(Qp/Qp) −→ Gal

(
Qp

(
w

1
p−1
p

)
/Qp

)
∼= F×

p
χ−1

−−−−→ Q×
ℓ .

The inertia group IQp
⊂ Gal(Qp/Qp) acts trivially on Kχ if and only if χ is trivial; in that case

Kχ = Qℓ on Spec(Qp). Consequently, the semisimple trace

Trss
(
Φ | RΨZp(Kχ)s̄

)
=

{
0, χ ̸= 1,

1, χ = 1.

Putting this together, we obtain

τssµ,m′,χ =

{
0, χ ̸= 1,

1I , χ = 1,
hence τssµ,m′ = 1I ̸= (p− 1)1I+ = (p− 1)zssµ .

As one can see, for the same µ, different truncation indices m and m′ give different functions.
For the cocharacter µ′ : x 7→ x−1 and the truncation index m′, a similar computation shows that

(p−1) zssµ′ = τssµ′,m′ = 1It−1I ,
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and therefore

τssµ,m = 1I = (p−1)αt

(
zssµ′

)
.

In particular, when χ is trivial,

τssµ,m,χ = αt

(
zssµ′,χ

)
= αt(1It−1I) = 1I = zssµ,χ.

Thus, although αt is unnecessary in the Iwahori case, it plays an essential role at the Γ1(p)-level.

1.2. Overview. This paper is a continuation of [HLS], but it is intended to be self-contained. The
essential input we take from [HLS] is the centrality of each χ-monodromic component. Apart
from this, most results from [HLS] that we use are revisited and, where convenient, reproved
here—sometimes with slight variations.

In §2, we set up the notation used throughout the paper. From this point on, we assume G = GLn.
In §3, we review lattice descriptions of the affine Grassmannian and the (enhanced) affine flag
variety. Sections §4 and §5 construct local models at Iwahori level and establish results on hyperbolic
localization for these schemes. Sections §6 and §7 construct local models at Γ1(p)-level and analyze
hyperbolic localization there. In §8 and §9, we construct central elements in the Γ1(p) Hecke algebra
and its variants. In §10, we prove that the central elements constructed by different methods
coincide. Section §11 extends the preceding results to a general finite field Fq. Finally, in §12, we
introduce the additional ingredients needed to treat G = GSp2g and indicate the corresponding
generalizations.

1.3. Acknowledgements. The author is grateful to his advisor, Thomas J. Haines, for proposing
this project and for many helpful discussions. He also thanks Benôıt Stroh for valuable conversations
during their earlier collaboration [HLS]. This work was partially supported by a Hauptman Summer
Fellowship (2024) at the University of Maryland; the author warmly thanks the donor, Carol Fuller-
ton, for her generous support. Additional support was provided by an Ann G. Wylie Dissertation
Fellowship (2025) at the University of Maryland, for which the author thanks the Graduate School
at the University of Maryland.

2. Notation

In this section, we fix the notation and conventions that will be used throughout the paper.
Fix ℓ ̸= p two prime numbers throughout this paper. Let G be either GLn or GSp2g over

Spec(Z). For GLn, we view G as the automorphism group scheme of Zn, where we denote by ei the
element whose i-th coordinate is 1 and all other coordinates are 0. For GSp2g, we view G as the

automorphism group scheme of Z2g preserving the standard symplectic form up to a unit, where
the standard symplectic form ⟨·, ·⟩ on Z2g is given by the matrix(

0 J

−J 0

)
,

and J denotes the antidiagonal identity matrix of size g × g.
Let B/Spec(Z) be the “upper” Borel subgroup and T/Spec(Z) the diagonal torus of G. When

we work over a valuation field F (e.g. Qp, Fp((t)), or Qp((t))) with valuation ring OF , where the
Bruhat–Tits theory [BT] applies, we use the following conventions: by a hyperspecial subgroup, we
always mean G(OF ); by an Iwahori subgroup, we mean the preimage of B(F/OF ) ⊂ G(F/OF )
under the reduction map G(F ) → G(F/OF ); and by the Γ1(p) (or pro-p) Iwahori subgroup, we
mean the preimage of U(F/OF ) ⊂ G(F/OF ) under the same reduction map, where U/Spec(Z) ⊂ B
is the unipotent radical of B.

Occasionally, by “hyperspecial” (resp. “Iwahori”) subgroup we also refer to the affine smooth con-
nected OF -model of GF whose set of OF -valued points is the hyperspecial (resp. Iwahori) subgroup
defined above; this will be clear from the context.

When F is a local field, we fix a separable closure F of F and denote by WF the Weil group of
F , viewed as a subgroup of the Galois group Gal(F/F ). The Artin map

Art−1
F : WF −→ F×
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is normalized so that geometric Frobenius elements are sent to uniformizers. The inertia group of
F is denoted by JF ⊂ Gal(F/F )

Over a general field k, the affine Grassmannian GrG,k (resp. affine flag variety FlG,k) attached
to G is defined to be the ind-scheme representing the fpqc-sheafification of the functor

{ k-algebra R 7−→ G(R((t)))/G(R[[t]]) } (resp. { k-algebra R 7−→ G(R((t)))/I(R[[t]]) }).

where I(R[[t]]) ⊂ G(R[[t]]) is the preimage of B(R) ⊂ G(R) under the reduction map G(R[[t]]) →
G(R)).

When the base field k is clear from the context (in particular, when we work over the generic
point Spec(Qp) or the special point Spec(Fp) of Spec(Zp)), we simply write GrG (resp. FlG) for
GrG,k (resp. FlG,k). The same convention applies to T and B: we set GrT = FlT and GrB = FlB ,
defined as the fpqc-sheafification of the functor

{ k-algebra R 7−→ T (R((t)))/T (R[[t]]) } (resp. { k-algebra R 7−→ B(R((t)))/B(R[[t]]) }).

We fix a uniformizer wp ∈ Zp throughout this paper. For a scheme X defined over Spec(Zp),

we denote by Xη/Spec(Qp) its generic fiber, by Xs/Spec(Fp) its special fiber, by Xη̄/Spec(Qp) its

geometric generic fiber (using the separable closure fixed above), and by Xs̄/Spec(Fp) its geometric
special fiber.

For each ring k ∈ {Zp,Zp,Qp,Qp,Fp,Fp}, the map (p− 1) : Tk −→ Tk, t 7→ tp−1 is a connected
finite étale cover with covering group the (p− 1)-st roots of the identity of T (Zp), which we identify
with T (Fp) via the Teichmüller lifting throughout the paper. We denote by T (Fp)

∨ the set of

characters of T (Fp) valued in Q×
ℓ .

3. Affine grassmannian and (enhanced) affine flag variety

Starting from this section, we assume that G = GLn, and we only deal with GSp2g in the last
section.

Let R be any ring. By an R[[t]]-lattice in R((t))n, we mean one of the following equivalent notions
(see, e.g., [Go, Definition 3.1], [Zhu16, Definition 1.1.1], and [Hai25+]).

Definition 3.1. An R[[t]]-lattice L ⊂ R((t))n is an R[[t]]-submodule such that tNR[[t]]n ⊆ L ⊆
t−NR[[t]]n for some integer N > 0, and that satisfies the following equivalent conditions:

(i) the R-module t−NR[[t]]n/L is R-projective;
(ii) the R[[t]]-module L is R[[t]]-projective.

This definition extends to any scheme S by gluing along affine open subsets U ⊂ S; in this case we
call such an object an OS [[t]]-lattice.

Remark 3.2. For N ′ > N > 0 in Definition 3.1, using the natural sequence

t−NR[[t]]n/L −→ t−N ′
R[[t]]n/L −→ t−N ′

R[[t]]n/t−NR[[t]]n,

whose last term is R-projective, we see that the R-module t−NR[[t]]n/L is projective if and only

if t−N ′
R[[t]]n/L is projective. Note that in Definition 3.1 we may equivalently replace N by two

integers m+ > m− such that tm
+

R[[t]]n ⊆ L ⊆ tm
−
R[[t]]n.

There is a standard lattice

Λ0,R := R[[t]]n ⊂ R((t))n.

Definition 3.1 provides an equivalent description of GrG,k as a functor.

Lemma 3.3. Let R be any k-algebra. Then GrG,k(R) identifies functorially with the set of R[[t]]-
lattices in R((t))n via the map g ∈ G(R((t))) 7→ gΛ0,R.

Proof. See [Zhu16, Definition 1.1.2, (1.2.1), and Proposition 1.3.6]. Note that GLn-torsors can be
naturally identified with rank-n vector bundles ([Zhu16, §0.3.3]). The main point is that any R[[t]]-
lattice L ⊂ R((t))n is étale locally on Spec(R) free ([Zhu16, Lemma 1.3.7]), and even Zariski locally
on Spec(R) free ([Hai25+, Lemma 2.3.8]). Via the map in the lemma, the group G(R((t))) acts
transitively on the set of free R[[t]]-lattices in R((t))n, with stabilizer G(R[[t]]). □
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A t-periodic complete R[[t]]-lattice chain L• := (· · · ⊂ L−1 ⊂ L0 ⊂ L1 ⊂ · · · ) is a sequence of
R[[t]]-lattices such that Li/Li−1 is locally free of rank 1 and Li+n = t−1Li for all i ∈ Z. There is a
standard t-periodic complete R[[t]]-lattice chain

Λi,R :=
(
t−1R[[t]]

)i ⊕R[[t]]2g−i.

The notion of t-periodic complete R[[t]]-lattice chains gives an equivalent description of FlG,k as a
functor.

Lemma 3.4. Let R be any k-algebra. Then FlG,k(R) identifies functorially with the set of t-periodic
complete R[[t]]-lattice chains in R((t))n via the map g ∈ G(R((t))) 7→ g(Λ•,R).

Proof. A t-periodic complete R[[t]]-lattice chain (· · · ⊂ L−1 ⊂ L0 ⊂ L1 ⊂ · · · ) is determined by

L0 ⊂ L1 ⊂ · · · ⊂ Ln = t−1L0. Étale locally on Spec(R), we may assume that all Li and Li/Li−1

are free. We then obtain a full flag

L0 ⊂ L1/L0 ⊂ · · · ⊂ Ln/L0 = t−1L0/L0

in t−1L0/L0. Since G(R) acts transitively on the set of full flags in Rn with stabilizer B(R),
Lemma 3.3 implies the claim. □

Remark 3.5. In [HR21, §4], the affine flag variety FlG,k is defined as the fpqc-sheafification of
the functor { k-algebra R 7→ G(R((t)))/I(R[[t]]) }, where I/Spec(k[[t]]) is the Iwahori group scheme
corresponding to B. This agrees with our definition, since for any k-algebra R, I(R[[t]]) ⊂ G(R[[t]])
is the preimage of B(R) ⊂ G(R) under the reduction map G(R[[t]])→ G(R) (for k itself, this follows
from Bruhat–Tits theory [BT]). For G = GLn, this is proved in [Hai05, §3.2]; the key point is
that the automorphism group scheme Aut(Λ•,k[[t]]) is smooth over Spec(k[[t]]), and hence equals the
Iwahori group scheme. For G = GSp2g, smoothness is proved in [HLS, Proposition 6.2.4] (only the
special fiber is needed).

Since we will later work with objects at the Γ1(p)-level, we introduce the following definition of
the enhanced affine flag variety.

Definition 3.6. Let FltG,k denote the T -torsor over FlG,k such that, for any k-algebra R, its R-
valued points parametrize isomorphisms

ϕi : Li/Li−1

∼=−−→ R, 1 ≤ i ≤ n.

There is a standard R-valued point

Λt
•,R ∈ FltG,k(R)

whose underlying lattice chain is the standard chain (Λ•,R), and whose trivializations are given by

ϕi : t
−1R[[t]]/R[[t]]

×t−−−→ R[[t]]/tR[[t]]
t 7→0−−−→ R.

Lemma 3.7. Let R be any k-algebra. Then FlG,k identifies functorially with the R-valued points
of the fpqc-sheafification of the functor { k-algebra R 7→ G(R((t)))/U(R[[t]]) }, where U(R[[t]]) is the
preimage of U(R) ⊂ G(R) under the reduction map G(R[[t]]) → G(R). This identification is given
by g ∈ G(R((t))) 7→ g(Λt

•,R).

Proof. Consider the set of full flags in Rn equipped with trivializations of the consecutive quotients.
Then G(R) acts transitively on this set with stabilizer U(R). The rest of the argument follows as
in the proof of Lemma 3.4. □

4. Truncated deformations for the Iwahori level

As mentioned in §3, unless otherwise specified, G = GLn.
As in [HLS, Sec. 6.1], we define

Vi[t] := (t+ wp)
−1Zp[t]

i ⊕ Zp[t]
n−i

as a Zp[t]-submodule of

V := Zp[t, t
−1, (t+ wp)

−1]n = Zn ⊗ Zp[t, t
−1, (t+ wp)

−1].
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We recall the definition of the truncated deformations for the Iwahori level in [HN, Definition 2] and
[HLS, Definition 7.1.1]. The truncation index is given by m = (m+,m−) where m+ > m− are two
integers.

4.1. The case of G.

Definition 4.1. Let M0,m,G denote the moduli space which associates to any scheme S over
Spec(Zp) the set of chains (W0 ⊂ W1 ⊂ · · · ⊂ Wn) of OS [t]-submodules of OS [t, t

−1, (t + wp)
−1]n

fitting into a commutative diagram with injective morphisms

tm
−V0[t]OS

// tm
−V1[t]OS

// · · · // tm
−Vn[t]OS

W0

OO

// W1

OO

// · · · // Wn

OO

tm
+V0[t]OS

OO

// tm
+V1[t]OS

OO

// · · · // tm
+Vn[t]OS

OO

where

• Wi/t
m+Vi[t]OS

⊂ tm
−Vi[t]OS

/tm
+Vi[t]OS

is locally a direct factor as an OS-module and
its OS-rank is independent of i, and
• Wn = (t+ wp)

−1W0.

Remark 4.2. Using the natural sequence

Wi/t
m+

Vi[t]OS
−→ tm

−
Vi[t]OS

/tm
+

Vi[t]OS
−→ tm

−
Vi[t]OS

/Wi,

whose middle term is OS-projective, we see that

Wi/t
m+

Vi[t]OS
⊂ tm

−
Vi[t]OS

/tm
+

Vi[t]OS

is locally a direct factor as an OS-module if and only if tm
−Vi[t]OS

/Wi is OS-projective.

The moduli space M0,m,G is shown to be representable by a projective scheme over Spec(Zp)
in [HN, Definition 1, 2]. The scheme M0,m,G serves as a (truncated) deformation of the affine
Grassmannian GrG,Qp from the affine flag variety FlG,Fp , which is justified by the following lemmas.
We use the equivalent definition of GrG (resp. FlG) given in Lemma 3.3 (resp. Lemma 3.4).

Over the generic point Spec(Qp), a chain (W0 ⊂ W1 ⊂ · · · ⊂ Wn) as in Definition 4.1 is completely
determined by W0, as proved in the following lemma.

Lemma 4.3. Over the generic point Qp, the morphism

Wi−1

tm+Vi−1[t]OS

−→ Wi

tm+Vi[t]OS

is an isomorphism.

Proof. It suffices to show that

W0

tm+V0[t]OS

−→ Wn

tm+Vn[t]OS

is an isomorphism. Multiplication by (t+wp) induces an isomorphism on W0/t
m+V0[t]OS

since wp

is invertible in Qp and

(t+ wp)
−1OS [t] ∩ OS [t] = OS [t]

inside OS [t, t
−1, (t+ wp)

−1]. □

Lemma 4.4. There exists a canonical closed embedding taking the generic fiberM0,m,G,η ofM0,m,G

into GrG.
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Proof. The morphism is given by

(W0 ⊂ W1 ⊂ · · · ⊂ Wn) 7−→ W ′
0,

where W ′
0 is the unique lattice in OS((t))

n such that

tm
+

OS [[t]]
n ⊂ W ′

0 ⊂ tm
−
OS [[t]]

n and W ′
0/t

m+

OS [[t]]
n =W0/V0[t]OS

,

where, for the second equality, we used the identification

tm
−
OS [[t]]

n/tm
+

OS [[t]]
n = tm

−
V0[t]OS

/tm
+

V0[t]OS
.

By Lemma 4.3 and Definition 3.1(ii), this is an embedding. It identifiesM0,m,G,η with the image

GrG,m(R) := {R[[t]]-lattices L ⊂ R((t))n | tm
+

R[[t]]n ⊂ L ⊂ tm
−
R[[t]]n },

which is a closed subscheme of GrG by [Zhu16, Theorem 1.1.3] (this scheme may be used to define
the ind-scheme structure on GrG). □

Remark 4.5. For convenience, throughout this paper, when the embedding is canonical, we write
it as an inclusion. For example, we use M0,m,G,η ⊂ GrG to denote the canonical embedding in
Lemma 4.4.

Lemma 4.6. There exists a canonical closed embedding taking the special fiberM0,m,G,s ofM0,m,G

into FlG.

Proof. The map is

(W0 ⊂ W1 ⊂ · · · ⊂ Wn) 7−→ (W ′
0 ⊂ W ′

1 ⊂ · · · ⊂ W ′
n),

where W ′
i is the unique lattice in OS((t))

n such that

tm
+

OS [[t]]
n ⊂ W ′

i ⊂ tm
−
OS [[t]]

n and W ′
i/t

m+

Λi,OS
=Wi/Vi[t]OS

,

using the identification

tm
−
Λi,OS

/tm
+

Λi,OS
= tm

−
Vi[t]OS

/tm
+

Vi[t]OS
.

By Definition 3.1(ii), this is an embedding. It is closed since M0,m,G,s is proper ([HN]) and FlG
is ind-proper ([Ri16, Theorem A]); we use that any proper monomorphism is a closed embedding
[StaPro, Tag 04XV]. □

Remark 4.7. Moreover, one can show that there exists a closed embedding integrally M0,m,G ⊂
GrI,wp

, where the target is the specialization at wp of the Pappas–Zhu Grassmannian [PZ] attached
to a smooth affine group scheme I over the affine line Spec(Zp[u]). This fact will not be used in
this paper; see [HLS, Sec. 9.5] for details.

4.2. The case of T . Using the definition ofM0,m,GL1
, we define the truncated deformations in the

case of T as a direct product.

Definition 4.8. Let M0,m,T denote the direct product of n copies of M0,m,GL1 . For any scheme
S over Spec(Zp), the S-valued points ofM0,m,T are given by n-tuples (U1,U2, · · · ,Un) such that

• tm
+OS [t] ⊂ Ui ⊂ tm

−OS [t], and

• Ui/tm
+OS [t] ⊂ tm

−OS [t]/t
m+OS [t] is locally a direct factor as an OS-module.

By taking Wi := (t+ wp)
−1U1 ⊕ · · · ⊕ (t+ wp)

−1Ui ⊕ Ui+1 ⊕ · · · ⊕ Un, we can embedM0,m,T into
M0,m,G. As both sides are proper, this is a closed embedding by [StaPro, Tag 04XV].

The schemeM0,m,T also serves as a truncated deformation.

Lemma 4.9. There exists a canonical closed embedding taking the generic fiberM0,m,T,η ofM0,m,T

into GrT . The embeddingsM0,m,T,η ⊂ GrT ,M0,m,T ⊂M0,m,G,M0,m,G,η ⊂ GrG and GrT ⊂ GrG
(induced from T ⊂ G) form a Cartesian diagram

M0,m,T,η
//

��

GrT

��
M0,m,G,η

// GrG.
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Proof. The affine Grassmannian GrT is, by definition, also a direct product of n copies of GrGL1
.

The existence of the embedding is a direct consequence of Lemma 4.4 applied to GL1. For a =
(ai)i ∈ T (R((t))), we have

aΛ0,R = a1R[[t]]⊕ · · · ⊕ anR[[t]],

so the Cartesian property follows. □

Lemma 4.10. There exists a canonical closed embedding taking the special fiberM0,m,T,s ofM0,m,T

into FlT = GrT . The embeddings M0,m,T,s ⊂ FlT , M0,m,T ⊂ M0,m,G, M0,m,G,s ⊂ FlG and
FlT ⊂ FlG form a Cartesian diagram

M0,m,T,s
//

��

FlT

��
M0,m,G,s

// FlG.

Proof. Since FlT = GrT , the definition of this closed embedding is the same as in Lemma 4.9. For
a = (ai)i ∈ T (R((t))), we have

aΛi,R = t−1a1R[[t]]⊕ · · · ⊕ t−1aiR[[t]]⊕ ai+1R[[t]]⊕ · · · ⊕ anR[[t]],

so the Cartesian property follows. □

4.3. The case of B. Now we give the analogue ofM0,m,G for B, whose definition is more subtle.

Remark 4.11. Throughout this paper, when it is clear from the context, for any ring R, we identify
Rb1 with the subset of Rb2 (b1 ≤ b2) whose last b2 − b1 coordinates are zero, and in this case, we
use the notation Rb1 ⊂ Rb2 .

Definition 4.12. Let M0,m,B denote the moduli space which associates to any scheme S over

Spec(Zp) the set of OS [t]-modules tm
+V0[t]OS

⊂ W0 ⊂ tm
−V0[t]OS

such that

• W0/t
m+V0[t]OS

⊂ tm
−V0[t]OS

/tm
+V0[t]OS

is locally a direct factor as an OS-module, and
• for W0,i := W0 ∩ OS(t)

i (see Remark 4.11; in particular, W0,0 = 0 and W0,n = W0),
there is an extension W0,i−1 → W0,i → Qi where the first arrow is the natural inclusion
and the second arrow is the projection to the i-th component such that, as the image of

the projection, the OS [t]-module tm
+OS [t] ⊂ Qi ⊂ tm

−OS [t] is a well-defined point in

M0,m,GL1
(S) (in other words, Qi/t

m+OS [t] ⊂ tm
−OS [t]/t

m+OS [t] is locally a direct factor
as an OS-module).

The moduli space M0,m,B is not defined in [HN] or [HLS]. To show the representability of
M0,m,B , we need the following lemmas.

Lemma 4.13. In Definition 4.12, for each i, the quotient

W0,i/t
m+

OS [t]
i ⊂ tm

−
OS [t]

i/tm
+

OS [t]
i

is locally a direct factor as an OS-module.

Proof. From the definition of W0,i, it is clear that t
m+OS [t]

i ⊂ W0,i ⊂ tm
−OS [t]

i, so the inclusion

above makes sense. To show that it is locally a direct factor, it suffices to prove that tm
−OS [t]

i/W0,i

is a projectiveOS-module (see Remark 4.2). For i = 1, this is given in the definition, sinceW0,1 = Q1

is required to be a well-defined point inM0,m,GL1
. For larger i, we have extensions

tm
−
OS [t]

i−1/W0,i−1 −→ tm
−
OS [t]

i/W0,i −→ tm
−
OS [t]/Qi,

and the result follows by induction on i. □

Lemma 4.14. In Definition 4.12, for each i, the natural OS-map

tm
−
OS [t]

i−1/W0,i−1 −→ tm
−
OS [t]

i/W0,i

is universally injective, in the sense that after any base change S′ → S, the induced OS′-map is
injective.



14 QIHANG LI

Proof. Taking quotients, the extension of OS [t]-modules W0,i−1 →W0,i → Qi induces an extension
of OS-modules

W0,i−1/t
m+

OS [t]
i−1 −→W0,i/t

m+

OS [t]
i −→ Qi/t

m+

OS [t],

where the second arrow is still the projection to the i-th component of tm
−OS [t]

i/tm
+OS [t]

i. This

extension splits since Qi/t
m+OS [t] is OS-projective.

After base change along S′ → S, we obtain an extension

W ′
0,i−1/t

m+

OS′ [t]i−1 −→W ′
0,i/t

m+

OS′ [t]i −→ Q′
i/t

m+

OS′ [t],

where the second arrow is again the projection to the i-th component of tm
−OS′ [t]i/tm

+OS′ [t]i, and

W ′
0,i (resp. Q′

i) is the image of W0,i ⊗OS
OS′ → tm

−OS′ [t]i (resp. Qi ⊗OS
OS′ → tm

−OS′ [t]). This
implies

W ′
0,i ∩ tm

−
OS′ [t]i−1 =W ′

0,i−1,

which is exactly the desired universal injectivity. □

Remark 4.15. As a universally injective OS-map,

tm
−
OS [t]

i−1/W0,i−1 −→ tm
−
OS [t]

i/W0,i

is, in particular, injective, which implies W0,i ∩ tm
−OS [t]

i−1 = W0,i−1; this recovers the equality
W0,i ∩ OS(t)

i−1 = W0,i−1. The universal injectivity is useful in proving the representability of
M0,m,B , since it defines an open condition.

Proposition 4.16. The moduli spaceM0,m,B is representable by a scheme.

Proof. By Lemma 4.13, there is a natural embedding

M0,m,B ↪→
∏

1≤i≤n

(
gr
(
tm

−
Zp[t]

i/tm
+

Zp[t]
i
)
× gr

(
(tm

−
Zp[t]/t

m+

Zp[t])i
))

=
∏

1≤i≤n

(
gr
(
Zi(m+−m−)
p

)
× gr

(
(Zm+−m−

p )i
))

.

where gr(Zi(m+−m−)
p ) is the classical Grassmannian scheme (strictly speaking, a disjoint union of

classcial Grassmannian schemes indexed by ranks) whose S/Spec(Zp)-valued points are locally

OS-direct factors L ⊂ Oi(m+−m−)
S , and (tm

−Zp[t]/t
m+Zp[t])i (resp. (Zm+−m−

p )i) is a copy of

tm
−Zp[t]/t

m+Zp[t] (resp. Zm+−m−

p ). Choose isomorphisms

tm
−
Zp[t]

i/tm
+

Zp[t]
i ∼= Zi(m+−m−)

p

such that
tm

−
Zp[t]

i−1/tm
+

Zp[t]
i−1 ⊂ tm

−
Zp[t]

i/tm
+

Zp[t]
i

corresponds to

Z(i−1)(m+−m−)
p ⊂ Zi(m+−m−)

p ,

and, viewing (tm
−Zp[t]/t

m+Zp[t])i ⊂ tm
−Zp[t]

i/tm
+Zp[t]

i as the subset where the first i− 1 coordi-

nates vanish, identify it with (Zm+−m−

p )i ⊂ Zi(m+−m−)
p where the first (i−1)(m+−m−) coordinates

vanish.
Under this embedding W0 7→ (Wi, Qi)i, the submodule Wi is the image of W0,i/t

m+OS [t]
i in

tm
−OS [t]

i/tm
+OS [t]

i = Oi(m+−m−)
S , and Qi is the image of Qi/t

m+OS [t] in (tm
−Zp[t]/t

m+Zp[t])i =

(Zm+−m−

p )i.
The image is the locally closed subscheme of∏

1≤i≤n

(
gr(Zi(m+−m−)

p )× gr((Zm+−m−

p )i)
)

cut out by:

• the closed condition Wi ⊂ Oi(m+−m−)
S ;

• the closed condition Wi ⊂Wn;
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• the open condition that Oi(m+−m−)
S /Wi → On(m+−m−)

S /Wn is universally injective (see
Lemma 4.14 and Remark 4.15);

• the closed condition Wn/Wi ⊂ Qi in (Om+−m−

S )i;
• the open condition that the inclusion Wn/Wi ⊂ Qi is surjective; and
• the closed condition that Wn is stable under the nilpotent t-action on

tm
−
OS [t]

n/tm
+

OS [t]
n ∼= On(m+−m−)

S .

HenceM0,m,B is representable by a locally closed subscheme of a projective scheme. □

Lemma 4.17. There exist natural embeddingsM0,m,T ⊂M0,m,B ⊂M0,m,G such that the compos-
iteM0,m,T ⊂M0,m,G is the same as the embedding given in Definition 4.8.

Proof. The embeddingM0,m,T ⊂M0,m,B is given by

(U•) 7−→ U1 ⊕ · · · ⊕ Un =:W0,

which clearly defines a point ofM0,m,B .
For the embeddingM0,m,B ⊂M0,m,G, define

Wi :=W0 + (t+ wp)
−1W0,i.

Then tm
+Vi[t]OS

⊂ Wi ⊂ tm
−Vi[t]OS

, and it remains to show that tm
−Vi[t]OS

/Wi is a projective
OS-module whose rank is independent of i. For i = 0, n, projectivity follows from the definition.
For other i, first observe a natural isomorphism

Wi/Wi−1
∼= (t+ wp)

−1Qi/Qi.

Indeed,

Wi

Wi−1
=
W0 + (t+ wp)

−1W0,i

W0 + (t+ wp)−1W0,i−1
=

(t+ wp)
−1W0,i

(t+ wp)−1W0,i−1 +W0,i
=

(t+ wp)
−1Qi

Qi
,

where we used (t + wp)
−1OS [t] ∩ OS [t] = OS [t]. In particular, Wi/Wi−1 is a rank-1 projective

OS-module.
Assume tm

−Vi[t]OS
/Wi is OS-projective. From the extension

Wi/Wi−1 −→ tm
−
Vi[t]OS

/Wi−1 −→ tm
−
Vi[t]OS

/Wi,

we deduce that tm
−Vi[t]OS

/Wi−1 is OS-projective. Now, from

tm
−
Vi−1[t]OS

/Wi−1 −→ tm
−
Vi[t]OS

/Wi−1 −→ tm
−
Vi[t]OS

/tm
−
Vi−1[t]OS

,

we see that tm
−Vi−1[t]OS

/Wi−1 is OS-projective; thus, by downward induction on i, projectiv-
ity holds for all i. A rank count using the two extensions above shows that the OS-rank of

tm
−Vi[t]OS

/Wi is independent of i.
Finally, by construction, the compositeM0,m,T ⊂M0,m,G is the same as in Definition 4.8. □

Remark 4.18. Using the proof of Proposition 4.16 and the construction of the embeddingM0,m,B ⊂
M0,m,G in Lemma 4.17, one can show thatM0,m,B is a locally closed subscheme ofM0,m,G under
that embedding. Note that the additional requirement Wi =W0 + (t+wp)

−1W0,i defines a locally
closed condition. Since we do not need this result in this paper, the proof is omitted.

We now justify the definition ofM0,m,B by showing that it is a truncated deformation of GrB,Qp

from FlB,Fp . Note that in our setting, GrB,k = FlB,k. First, we give equivalent characterizations of
GrB,k.

Lemma 4.19. Let R be any k-algebra. The set GrB,k(R) identifies functorially with the set of iso-
morphism classes of pairs (F , α) where F is a fpqc B-torsor over the formal disc DR := Spec(R[[t]])
and α is a trivialization of F over the punctured formal disc D∗

R := Spec(R((t))).

Proof. This is a special case of [Zhu16, Proposition 1.3.6]. The map is induced by

g ∈ B(R((t))) 7−→ g(F0, α0),

where F0 = B × DR and α0 is the identity morphism. The main point is that any such F is étale
locally on Spec(R) trivial [Zhu16, Lemma 1.3.7]. □
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We also give an equivalent characterization of GrB,k using chains of lattices with additional
structure.

Lemma 4.20. Let R be any k-algebra. The set GrB,k(R) identifies functorially with the set of
chains of projective R[[t]]-modules C0 ⊂ C1 ⊂ · · · ⊂ Cn such that Ci is an R[[t]]-lattice in R((t))i ⊂
R((t))n and Ci = Cn ∩R((t))i, with the consecutive quotient Ci/Ci−1 being an R[[t]]-lattice in R((t)) =
R((t))i/R((t))i−1 via the projection to the i-th component.

Proof. By Lemma 4.3, GrB(R) consists of isomorphism classes of pairs (F , α). Starting from (F , α),
note that B stabilizes the standard flag 0 ⊂ R[[t]] ⊂ · · · ⊂ R[[t]]n. Using the contracted products
Vi := F ×B Oi

R[[t]], which are rank-i vector bundles on DR [Zhu16, Sec. 0.3.3], taking global sections

yields a chain C• of projective R[[t]]-modules with Ci := Γ(Vi) of rank i. Via α we have

Γ(F ×B Oi
R[[t]]) ⊂ Γ(F ×B Oi

R((t)))
α−−→ Γ(Oi

R((t))) = R((t))i ⊂ R((t))n,

so each Ci is an R[[t]]-lattice in R((t))i and Ci = Cn ∩R((t))i. Moreover, Ci/Ci−1 is the R[[t]]-lattice in
R((t)) corresponding to F ×B (Oi

R[[t]]/O
i−1
R[[t]]).

Conversely, from such a chain C• one obtains a B-torsor as the isomorphism scheme between C•
and the standard chain 0 ⊂ R[[t]] ⊂ · · · ⊂ R[[t]]n. This is a B-torsor since the automorphism group
scheme of the standard chain is B and, as Ci and Ci/Ci−1 are étale locally free on Spec(R) [Zhu16,
Lemma 1.3.7], the chain is étale locally isomorphic to the standard one. The trivialization α is
induced from Ci[ 1t ] = R((t))i.

It is standard to check that these constructions are inverse to each other. □

Lemma 4.20 will be used as the definition of GrB,k in the next two lemmas.

Lemma 4.21. There exists a natural closed embedding taking the generic fiberM0,m,B,η ofM0,m,B

into GrB. The embeddingsM0,m,B,η ⊂ GrB,M0,m,B ⊂M0,m,G,M0,m,G,η ⊂ GrG and GrB ⊂ GrG
(induced from B ⊂ G) form a Cartesian diagram

M0,m,B,η
//

��

GrB

��
M0,m,G,η

// GrG.

Proof. Let R be a Qp-algebra and W0 ∈ M0,m,B,η(R). To define the embeddingM0,m,B,η ⊂ GrB ,
specify the image of W0 as follows. Define

tm
+

R[[t]]i ⊂ Ci ⊂ tm
−
R[[t]]i

to be the R[[t]]-lattice given by W0,i/t
m+

R[t]i using Definition 3.1(i). This yields a point in GrB(R)
since

W0,n ∩R(t)i =W0,i ⇐⇒
W0,n

tm+R[t]n
∩ tm

−
R[t]i

tm+R[t]i
=

W0,i

tm+R[t]i

⇐⇒ Cn
tm+R[[t]]n

∩ tm
−
R[[t]]i

tm+R[[t]]i
=

Ci
tm+R[[t]]i

⇐⇒ Cn ∩R((t))i = Ci,

and the fact that Ci/Ci−1 is an R[[t]]-lattice follows from

tm
−
R((t))

Ci/Ci−1
=

tm
−
R[[t]]

tm+R[[t]]

Ci

tm+R[[t]]i
/ Ci−1

tm+R[[t]]i−1

=

tm
−
R[t]

tm+R[t]

W0,i

tm+R[t]i
/

W0,i−1

tm+R[t]i−1

=
tm

−
R[t]

Qi
.

Since GrB ⊂ GrG is given by

C0 ⊂ C1 ⊂ · · · ⊂ Cn 7−→ Cn,
the diagram is Cartesian, and thus the map M0,m,B,η → GrB is a closed embedding by Lemma
4.4. □
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Lemma 4.22. There exists a canonical closed embedding taking the special fiberM0,m,B,s ofM0,m,B

into FlB = GrB. The embeddings M0,m,B,s ⊂ FlB, M0,m,B ⊂ M0,m,G, M0,m,G,s ⊂ FlG and
FlB ⊂ FlG form a Cartesian diagram

M0,m,B,s
//

��

FlB

��
M0,m,G,s

// FlG.

Proof. The proof is the same as that of Lemma 4.21 (the base field is irrelevant). Note that
FlB ⊂ FlG is given by

C0 ⊂ C1 ⊂ · · · ⊂ Cn 7−→ L0 ⊂ L1 ⊂ · · · ⊂ Ln = t−1L0,

where Li := Cn + t−1Ci. Replacing W0,i with Ci and working with the power series ring instead, the
proof of Lemma 4.17 shows that

L0 ⊂ L1 ⊂ · · · ⊂ Ln = t−1L0

is a well-defined t-periodic lattice chain. □

By Lemma 4.21 and Lemma 4.22, we conclude that M0,m,B serves as a truncated deformation
of GrB,Qp

from FlB,Fp
.

5. The Gm-action and hyperbolic localization for the Iwahori level

We follow the convention that Gm denotes the multiplicative group scheme, which is the same as
GL1.

The consecutive quotients Qi in Definition 4.12 define a morphismM0,m,B →M0,m,T . Combin-
ing this morphism with the inclusionM0,m,B ⊂M0,m,G in Lemma 4.17, we obtain the diagram

(5.1) M0,m,B

%%yy
M0,m,T M0,m,G.

In this section, we describe Diagram 5.1 via hyperbolic localization onM0,m,G. It turns out to
be an analogue of [HR21, (1.1)].

Remark 5.1. We can define a morphism GrB → GrT by

C0 ⊂ C1 ⊂ · · · ⊂ Cn 7−→ (C1/C0, C2/C1, . . . , Cn/Cn−1).

Unlike Lemma 4.9 and Lemma 4.21, the commutative diagram formed byM0,m,B →M0,m,T , their
embeddings into the affine Grassmannians, and the map GrB → GrT (induced from the quotient
map B → T ),

M0,m,B,η
//

��

GrB

��
M0,m,T,η

// GrT ,

is not Cartesian. The reason is that M0,m,T only requires the consecutive quotients Qi to be
bounded by m, while the lattices W0,i themselves need not be bounded by m.

5.1. The Gm-action on truncated deformations. To apply the techniques of [Ri19] toM0,m,G,
we introduce a Gm-action on M0,m,G, inherited from an action of a larger group scheme Im that
can be viewed as a truncated (in the sense of quotients) deformation of positive loop group schemes.

Recall the definition of Im from [HLS, Definition 6.4.1]. Although [HLS, Definition 6.4.1] is stated
for GSp2g, all results in [HLS, Sec. 6.4] apply to GLn after ignoring the symplectic form.
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Definition 5.2. Let Im be the group-valued functor assigning to a Zp-algebra R the group of
automorphisms

g ∈ AutR[t]

( (t+ wp)
−1tm

−V0[t]R
tm+V0[t]R

)
with the following property:

• g preserves the images tm
−Vi[t]R of tm

−Vi[t]R in
(t+wp)

−1tm
−
V0[t]R

tm+V0[t]R
, for 0 ≤ i ≤ n.

The group scheme Im is smooth over Spec(Zp) with connected geometric fibers [HLS, Proposition
6.4.6]; it serves as a truncated deformation from the Iwahori subgroup to the hyperspecial subgroup
[HLS, Lemma 6.2.3, Lemma 6.4.3, Remark 6.4.5].

For any Zp-algebra R, the group T (R) acts naturally on (t+ wp)
−1tm

−V0[t]R by

(t1, . . . , tn) · (v1, . . . , vn) = (t1v1, . . . , tnvn),

and this action preserves tm
−Vi[t]R. Hence we obtain a natural embedding T ⊂ Im and thus

a T -action on M0,m,G. Throughout the paper, fix a cocharacter λ ∈ X∗(T ) such that, via the
conjugation action (using T ⊂ G), the corresponding cocharacter of G yields the attractor G+ = B
as in [HR21, Sec. 3.3.1]. (We recall the definitions of attractors and other objects from hyperbolic
localization below and equivalently, we require that the natural pairing between λ and any positive
root attached to B give a positive number.) The existence of such a cocharacter is well known for
reductive groups over a field (e.g. [Mil, Theorem 25.1]); for split reductive groups (such as GLn

and GSp2g), the same cocharacter defined over Spec(Z) works over any base field. Over Spec(Zp),

the group schemes B and G+ coincide, since both are smooth (hence reduced [StaPro, Tag 034E])
closed subgroup schemes of G and agree on every geometric fiber [HR21, Lemma 4.5].

Combining the T -action on M0,m,G with the cocharacter λ yields a Gm-action on M0,m,G.
Considering the embeddings M0,m,T ⊂ M0,m,B ⊂ M0,m,G from Lemma 4.17, and since the T -
action is given by scalar multiplications on the coordinates of V, we see thatM0,m,T andM0,m,B

are T -stable (though not Im-stable). Hence they inherit Gm-actions. The Gm-action onM0,m,T is
easily seen to be trivial.

5.2. Hyperbolic localization on M0,m,G. We recall some definitions and facts from [Ri19] in a
form suited to our situation.

Definition 5.3. [Ri19, Definition 1.3] Let X/S be a morphism of schemes, with a Gm-action on
X/S (trivial on S). Define three functors on S-schemes (writing XT := X ×S T ):

X0 : T 7→ HomGm

T (T,XT ), X+ : T 7→ HomGm

T ((A1
T )

+, XT ), X− : T 7→ HomGm

T ((A1
T )

−, XT ),

where Gm acts on (A1
T )

+ by the usual multiplication, on (A1
T )

− by its inverse, and trivially on T .
The functor X0 is the functor of fixed points; X+ (resp. X−) is the attractor (resp. repeller). There
are natural morphisms [Ri19, Sec. 1.6]

(5.2) X±

p±

!!

q±

}}
X0 X,

where q± (resp. p±) is evaluation at the zero (resp. unit) section.

Remark 5.4. Formation of X0, X+, and X− commutes with base change. For X/Spec(Zp) with
a Gm-action, we write X0

η , X
+
η , X−

η , etc., without ambiguity.

To ensure representability of these functors, we use the following notion. A Gm-action on X/S
is called étale locally linearizable if there exists a Gm-equivariant étale covering family {Ui → X}i
with each Ui affine over S and carrying a Gm-action.

Lemma 5.5. Let X/S be a morphism between schemes with an étale locally linearizable Gm-action,
then X0, X+, and X− are representable by schemes.

Proof. This is a special case of [Ri19, Theorem A]. □
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If the covering family {Ui → X}i can be chosen Zariski, we say the action is Zariski locally
linearizable. The Gm-action onM0,m,G is of this form.

Lemma 5.6. The Gm-action on M0,m,G is Zariski locally linearizable. Hence M0
0,m,G, M

+
0,m,G,

andM−
0,m,G are representable by schemes.

Proof. As in [HR21, Lemma 3.3], there is a natural Gm-equivariant closed embedding of M0,m,G

into a product of classical Grassmannians, and the induced Gm-action on the target (given by scalar
multiplication on coordinates) is Zariski locally linearizable. This yields the claim. □

Remark 5.7. In general, for any Gm-action on X/S with S a quasi-separated algebraic space and
X a quasi-separated algebraic space locally of finite presentation over S, the action is étale locally
linearizable [AHR, Theorem 10.1]. This applies to M0,m,G/Spec(Zp) since M0,m,G is projective
over Spec(Zp).

For our Gm-action onM0,m,G, the “+” version of (5.2) reads

(5.3) M+
0,m,G

p+

%%

q+

zz
M0

0,m,G M0,m,G.

5.2.1. Hyperbolic localization on the generic fiber. Over the generic point Spec(Qp), Diagram 5.1
is naturally isomorphic to Diagram 5.3, mirroring [HR21, Proposition 3.4]. We first record two
lemmas.

Lemma 5.8. Let R be a ring and X ⊂ Y a closed embedding of R-schemes. If a morphism
f : A1

R → Y restricts to a morphism f |Gm,R
factoring through X, then f itself factors through X.

Proof. Let I ⊂ R[t] be the ideal cutting out the preimage of X in A1
R. Our assumption implies

t−1I = 0. Since t is a non zero-divisor in R[t], we have I = 0, hence f factors through X. □

Lemma 5.9. Let R be a ring and X ⊂ Y a Gm-equivariant closed embedding of R-schemes with an
étale locally linearizable Gm-action on Y . Then the induced map X+ → Y + is a closed embedding
and the diagram

X+ //

��

Y +

��
X // Y

is Cartesian.

Proof. For any R→ R′, a point of (X ×Y Y +)(R′) is a Gm-equivariant map g : (A1
R′)+ → YR′ with

g(1) ∈ X(R′). Since X is Gm-stable, g|Gm,R′ factors through XR′ , and by Lemma 5.8 so does g.

Hence (X ×Y Y +)(R′) = X+(R′), proving the Cartesian statement. The morphism X+ → Y + is a
closed embedding because X → Y is. □

Remark 5.10. The closed embedding X+ → Y + in Lemma 5.9 also appears under different
hypotheses in [HR21, Corollary 2.3].

Proposition 5.11. Over Spec(Qp), there is a natural isomorphism between Diagram 5.1 and Dia-
gram 5.3:

M0,m,T,η M0,m,B,η M0,m,G,η

M0
0,m,G,η M+

0,m,G,η M0,m,G,η.

=

q+ p+
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Proof. There is a Gm-action on GrG as well: for a Qp-algebra R, elements of T (R) act on R((t))n

by coordinatewise scalar multiplication, hence on R[[t]]-lattices; composing with λ : Gm → T gives a
Gm-action on GrG. With this action, the embedding of Lemma 4.4 is Gm-equivariant and identifies
M0,m,G,η with the locus of R[[t]]-lattices in R((t))n bounded by m. This matches [HR21, Sec. 3.3]
(their cocharacter χ plays the role of our λ).

First,M0
0,m,G,η =M0,m,T,η. This follows from the Cartesian diagram of Lemma 4.9

M0,m,T,η
//

��

GrT

��
M0,m,G,η

// GrG

together with Gr0G = GrT [HR21, Proposition 3.4]. Concretely, M0
0,m,G,η consists of Gm-fixed

lattices bounded by m, i.e. precisely the image ofM0,m,T,η.

Next, M+
0,m,G,η = M0,m,B,η. By [HR21, Proposition 3.4], we have Gr+G = GrB ⊂ GrG. The

diagram

M+
0,m,G,η

//

��

Gr+G

��
M0,m,G,η

// GrG

is Cartesian by Lemma 5.9, since M0,m,G,η ⊂ GrG is a Gm-equivariant closed embedding. The
claim then follows from Lemma 4.21, which asserts that

M0,m,B,η
//

��

GrB

��
M0,m,G,η

// GrG

is Cartesian. Under these identifications, p+ corresponds to the inclusionM0,m,B,η ⊂M0,m,G,η.
Finally, q+ corresponds to M0,m,B,η → M0,m,T,η. Indeed, the Gm-action on M0,m,B leaves

the consecutive quotients Qi unchanged by definition; using that sections ofM0,m,G,R → Spec(R)
are closed embeddings (since M0,m,G → Spec(Zp) is separated) and Lemma 5.8, we obtain the
identification. □

5.2.2. Hyperbolic localization on the special fiber. The special fiber of (5.3),

(5.4) M+
0,m,G,s

p+

&&

q+

yy
M0

0,m,G,s M0,m,G,s,

is subtler: in general the equalities M0
0,m,G,s =M0,m,T,s and M+

0,m,G,s =M0,m,B,s do not hold.

Nevertheless, for G = GLn (and similarly GSp2g), the schemeM0
0,m,G,s (resp. M+

0,m,G,s) contains

M0,m,T,s (resp. M0,m,B,s) as an open and closed subscheme, with (q+)−1(M0,m,T,s) =M0,m,B,s.

Example 5.12. Consider G = GL2. Points of FlG are t-periodic lattice chains L• : L0 ⊂ L1 ⊂
L2 = t−1L0. The Gm-action is induced by the T -action on coordinates via λ and translates such
chains.

If L• is Gm-fixed, then L0 and L1 are fixed. Using Gr0G = GrT [HR21, Proposition 3.4], we may
write

L• : U1 ⊕ U2 ⊂ V1 ⊕ V2 ⊂ t−1U1 ⊕ t−1U2,
with Ui (resp. Vi) rank-1 lattices in the i-th coordinate. By rank considerations, the only possibilities
are

V1 ⊕ V2 = t−1U1 ⊕ U2 or U1 ⊕ t−1U2.
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The embedding FlT ⊂ FlG yields the first case; the second is obtained by left-multiplying by (the
permutation matrix representing) the nontrivial element a ∈ S2 (the Weyl group). Thus

Fl0G = FlT
∐

a(FlT ).

If L• ∈ Fl+G, then the natural Gm-equivariant maps FlG → GrG sending L• to L0 and to L1 show
that L0,L1 ∈ GrB . Writing L0 (resp. L1) as a chain C• (resp. C′•) as in Lemma 4.20, one finds two
disjoint cases by considering the image q+(L•); in the first, L1 = L0 + t−1C1 and L• corresponds to
FlB ⊂ FlG, and in the second, L2 = L1 + t−1C′1 and the shift of L• corresponds to FlB . Hence

Fl+G = FlB
∐

s(FlB),

where s : L• 7→ L•−1 is the shift automorphism on FlG. Moreover, q+(FlB) = FlT and q+(s(FlB)) =
a(FlT ), so (q+)−1(FlT ) = FlB . By Lemma 5.9, the analogous statements hold forM0,m,G,s.

Proposition 5.13. Over Spec(Fp), there is a natural morphism between Diagram 5.1 and Diagram
5.4

M0,m,T,s M0,m,B,s M0,m,G,s

M0
0,m,G,s M+

0,m,G,s M0,m,G,s.

ι ι+ =

q+ p+

where ι and ι+ are open and closed embeddings, and the left square is Cartesian.

Proof. The argument follows Example 5.12. For a Gm-fixed t-periodic lattice chain

L0 ⊂ L1 ⊂ · · · ⊂ Ln = t−1L0,

write L0 = U1 ⊕ · · · ⊕ Un [HR21, Proposition 3.4]. At each step one replaces a single Ui by t−1Ui,
yielding n! possibilities, naturally indexed by the Weyl group W . Thus

M0
0,m,G,s =

∐
w∈W

w(M0,m,T,s),

where w acts via the corresponding permutation of coordinates.
For L• in the attractor, there are again n! candidates for q+(L•). By rank considerations,

q+(L•) ∈M0,m,T,s ⊂M0,m,G,s if and only if L• ∈M0,m,B,s. Hence (q+)−1(M0,m,T,s) =M0,m,B,s,
and the left square is Cartesian. □

Remark 5.14. Applying the shift automorphism of FlG (as in Example 5.12) to Proposition 5.13,
one finds that for some (but not all) w ̸= 1 in W (namely, those induced by shifts), the preimage
(q+)−1(w(M0,m,T,s)) is a copy ofM0,m,B,s.

Remark 5.15. Proposition 5.13 is an analogue of the “+”-diagram in [HR21, Proposition 4.7]. One
can also obtain it by pulling back that diagram (note that P+ there is B under our assumptions)
and applying Lemma 5.9. Since good moduli interpretations are available in our setting, we chose
a more direct proof.

6. Truncated deformations for the Γ1(p)-level

So far we have worked at the Iwahori level. We now pass to the Γ1(p)-level.
First, we introduce the geometric objects that are T -torsors overM0,m,G,M0,m,T , andM0,m,B .

Note that the notations for these objects in this paper are slightly different from those in [HLS]. In
[HLS], the T -torsor overM0,m,G is denoted byM+

0,m,G, but since we already use this notation for

the attractor, we will instead writeMt
0,m,G for the T -torsor overM0,m,G.

We briefly review determinant line bundles and their distinguished sections attached to complexes.
For details, see [HLS, Sec.2], [KM], and [Knud].

Let C = [V
α→ W ] be a complex of finite-rank projective OS-modules with rank(V ) = rank(W )

(i.e. C has virtual rank 0). The determinant line bundle Det(C) attached to C is defined as Det(W )⊗
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Det(V )−1 (for a finitely generated projective module, Det denotes the top exterior power), and it
is equipped with the distinguished section

OS
∼= Det(V )⊗Det(V )−1 Det(α)⊗id−−−−−−−→ Det(W )⊗Det(V )−1 =: Det(C).

Recall the following definition from [HLS, Sec.7.3] (there stated for GSp2g; we adapt it to GLn).

Definition 6.1. LetMt
0,m,G be the T -torsor overM0,m,G parametrizing isomorphisms

φi : Det

[
Wi−1

tm+Vi−1[t]OS

−→ Wi

tm+Vi[t]OS

]
∼= OS .

We define Mt
0,m,T and Mt

0,m,B by pulling back this T -torsor along the embeddings M0,m,T ⊂
M0,m,B ⊂M0,m,G in Lemma 4.17, obtaining embeddings

Mt
0,m,T ⊂ Mt

0,m,B ⊂ Mt
0,m,G.

The schemeMt
0,m,G serves as a truncated deformation to a T -torsor over the affine grassmannian

from the enhanced affine flag variety FltG (Definition 3.6). We define FltT and FltB by pulling back
FltG → FlG (Definition 3.6) along FlT ⊂ FlB ⊂ FlG.

Lemma 6.2. There exists a canonical closed embedding of the special fiber Mt
0,m,G,s of Mt

0,m,G

into FltG lifting the closed embedding in Lemma 4.6, and the resulting diagram

Mt
0,m,G,s

//

��

FltG

��
M0,m,G,s

// FlG

is Cartesian. Analogous statements hold with G replaced by T and by B.

Proof. For G, this is [HLS, Lemma 9.3.2]. The key point is the canonical isomorphism ([HLS,
Lemma 2.3.2])

Det
([
Wi−1/t

m+

Vi−1[t]OS
−→ Wi/t

m+

Vi[t]OS

])
= (Wi/Wi−1)⊗ (Vi[t]OS

/Vi−1[t]OS
)
−1

,

and the factor
(
Vi[t]/Vi−1[t]

)
admits a canonical trivialization using the basis ei ∈ V. Thus the

consecutive determinant line bundles identify with the consecutive quotients.
The cases of T and B follow by base change. □

7. The Gm-action and hyperbolic localization for the Γ1(p)-level

In this section, we generalize the results of §5 to the setting of T -torsors.
First, we specify the analogue of Diagram 5.1 for Γ1(p)-level objects. The morphismMt

0,m,B ⊂
Mt

0,m,G is given in Definition 6.1, so it remains to define a morphismMt
0,m,B →Mt

0,m,T .

Lemma 7.1. There exists a natural morphismMt
0,m,B →Mt

0,m,T liftingM0,m,B →M0,m,T , and
the resulting diagram

Mt
0,m,B

//

��

Mt
0,m,T

��
M0,m,B

//M0,m,T

is Cartesian.

Proof. We need a natural isomorphism

Det
[ Wi−1

tm+Vi−1[t]OS

→ Wi

tm+Vi[t]OS

]
∼= Det

[ Qi

tm+OS [t]
→ (t+ wp)

−1Qi

(t+ wp)−1tm+OS [t]

]
.

By [HLS, Lemma 2.3.2] there are isomorphisms of determinant line bundles

Det
[ Wi−1

tm+Vi−1[t]OS

→ Wi

tm+Vi[t]OS

]
∼= Det

[ Wi

Wi−1
→ tm

+Vi[t]OS

tm+Vi−1[t]OS

]
,
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Det
[ Qi

tm+OS [t]
→ (t+ wp)

−1Qi

(t+ wp)−1tm+OS [t]

]
∼= Det

[ (t+ wp)
−1Qi

Qi
→ (t+ wp)

−1tm
+OS [t]

tm+OS [t]

]
.

From the proof of Lemma 4.17, where it is shown that Wi

Wi−1
=

(t+wp)
−1Qi

Qi
, we obtain an isomorphism

of complexes [ Wi

Wi−1
→ tm

+Vi[t]OS

tm+Vi−1[t]OS

]
∼=
[ (t+ wp)

−1Qi

Qi
→ (t+ wp)

−1tm
+OS [t]

tm+OS [t]

]
.

Applying the determinant functor yields the desired natural isomorphism. Since the isomorphisms
in [HLS, Lemma 2.3.2] preserve the distinguished sections, and any isomorphism of complexes
preserves distinguished sections under the determinant, the natural isomorphism above identifies
the distinguished sections. □

Thus we obtain the diagram of T -torsors

(7.1) Mt
0,m,B

%%yy
Mt

0,m,T Mt
0,m,G.

Lemma 7.2. The two squares formed by Diagram 5.1 and Diagram 7.1

Mt
0,m,T Mt

0,m,B Mt
0,m,G

M0,m,T M0,m,B M0,m,G.

are Cartesian.

Proof. This follows from Definition 6.1 and Lemma 7.1. □

The action of Im onM0,m,G (§5.1) lifts naturally to an action onMt
0,m,G by translating trivial-

izations ([HLS, Lemma 7.5.1]). Hence we obtain a Gm-action onMt
0,m,G such that the projection

Mt
0,m,G → M0,m,G is Gm-equivariant. Since Mt

0,m,G → M0,m,G is affine and the Gm-action on

M0,m,G is Zariski locally linearizable (Lemma 5.6), the Gm-action onMt
0,m,G is also Zariski locally

linearizable. Therefore, the objects obtained by hyperbolic localization on Mt
0,m,G with respect

to this Gm-action are representable by schemes (Lemma 5.5). We have the following diagram of
schemes:

(7.2) Mt,+
0,m,G

$$zz
Mt,0

0,m,G Mt
0,m,G.

Remark 7.3. When we mention the T -action onMt
0,m,G,Mt

0,m,T , andMt
0,m,B , we always mean

the T -action on the trivializations in Definition 6.1, rather than the T -action induced by the Im-
action. For the latter, we only use the induced Gm-action to avoid ambiguity. By definition, the
Im-action (and hence the Gm-action) commutes with the T -action.

We now show that over the generic point Spec(Qp), there is a natural isomorphism between
Diagrams 7.1 and 7.2, generalizing Proposition 5.11 to T -torsors. Before proving this, we observe
that on the generic fiber the T -torsorMt

0,m,G,η →M0,m,G,η is actually trivial.

Lemma 7.4. The T -torsor Mt
0,m,G,η → M0,m,G,η is trivial. Moreover, there exists an Im,η-

equivariant (hence Gm,η-equivariant) canonical section can1,m trivializing this T -torsor. When G is
replaced by T or by B, analogous statements hold. We abuse notation and denote all these canonical
sections by can1,m.
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Proof. It suffices to treat G, since the other cases follow by base change. To define can1,m, we
specify the canonical trivializations φi in Definition 6.1 for any Wi, i.e. an invertible section of

Det
[ Wi−1

tm+Vi−1[t]OS

→ Wi

tm+Vi[t]OS

]
.

We claim that the distinguished section of this determinant line bundle is invertible on the generic

fiber. Indeed, the morphism Wi−1

tm+Vi−1[t]OS

→ Wi

tm+Vi[t]OS

is an isomorphism over the generic fiber by

Lemma 4.3. Thus the distinguished section provides a section of the T -torsor. This section is Im-
equivariant, since the Im-action onM0,m,G preserves distinguished sections (it induces isomorphisms
of the underlying complexes). □

Proposition 7.5. Over Spec(Qp), there is a natural isomorphism between Diagram 7.1 and Diagram
7.2

Mt
0,m,T,η Mt

0,m,B,η Mt
0,m,G,η

Mt,0
0,m,G,η Mt,+

0,m,G,η Mt
0,m,G,η,

=

qt,+ pt,+

and this isomorphism lifts that of Proposition 5.11.

Proof. By Lemma 7.4, we have an identificationMt
0,m,G,η =M0,m,G,η×T, with Gm acting trivially

on the T -factor. Hence

Mt,0
0,m,G,η =M0

0,m,G,η × T =M0,m,T,η × T =Mt
0,m,T,η,

Mt,+
0,m,G,η =M+

0,m,G,η × T =M0,m,B,η × T =Mt
0,m,B,η,

as required. □

Over the special point Spec(Fp), Diagram 7.1 becomes even simpler for the Γ1(p)-level. Recall

that there is a natural closed embeddingMt
0,m,G,s ⊂ FltG (Lemma 6.2). Define a T -action on FltG

by

(t•) · (L•, ϕ•) := (L′
•, ϕ

′
•),

where L′
i := t•Li (translation of the t-periodic lattice chain) and

ϕ′
i : L′

i/L
′
i−1

t−1
•−−−→ Li/Li−1

ϕi−−→ OS
×ti−−−→ OS .

Using the cocharacter λ, we obtain a Gm-action on FltG. Both FltG → FlG andMt
0,m,G,s ⊂ FltG are

Gm-equivariant ([HLS, Lemma 9.3.2]).

Remark 7.6. In the definition of ϕ′
i, the final factor OS

×ti−−→ OS is essential; without it, even FltT
would not be fixed by the Gm-action.

Proposition 7.7. Over the special point Spec(Fp), there exists a natural isomorphism between
Diagram 7.1 and Diagram 7.2

Mt
0,m,T,s Mt

0,m,B,s Mt
0,m,G,s

Mt,0
0,m,G,s Mt,+

0,m,G,s Mt
0,m,G,s,

=

qt,+ pt,+

and this isomorphism lifts that of Proposition 5.13.



THE TEST FUNCTION CONJECTURE FOR Γ1(p)-LEVEL 25

Proof. Let f :Mt
0,m,G →M0,m,G be theGm-equivariant projection. Then f(Mt,0

0,m,G,s) ⊂M0
0,m,G,s.

By the proof of Proposition 5.13,M0
0,m,G,s =

∐
w∈W w(M0,m,T,s). For x ∈ f−1(M0

0,m,G,s), we have

x ∈ Mt,0
0,m,G,s if and only if f(x) lies in the component corresponding to 1 ∈ W . Indeed, on the

component indexed by w ∈W , the element t ∈ Gm acts by wλ(t)−1 · λ(t) (with wλ(t) := λ(w−1tw))
via the T -action as a T -torsor, and this equals 1 for all t if and only if w = 1 (our fixed λ is regular).

Similarly, f(Mt,+
0,m,G,s) ⊂M

+
0,m,G,s. From the preceding analysis, f(Mt,+

0,m,G,s) lies inM0,m,B,s ⊂
M+

0,m,G,s, since the other components disappear. Note that the Gm-action on M0,m,B,s does not

change the consecutive quotients Qi; by Lemma 7.1, the full preimage f−1(M0,m,B,s) lies in the

attractor and hence equalsMt,+
0,m,G,s. □

8. Sheaves on M0,m,G,η and Mt
0,m,G,η

In this section, we define certain (shifted) perverse sheaves onM0,m,G,η andMt
0,m,G,η. As we will

prove later, via the closed embeddingsM0,m,G,s ⊂ FlG (Lemma 4.6) andMt
0,m,G,s ⊂ FltG (Lemma

6.2), the nearby cycles of these perverse sheaves yield central elements in the corresponding Hecke
algebras and these functions can be described explicitly (Theorem 10.12).

8.1. Construction of sheaves. To obtain the desired sheaves onMt
0,m,G,η, we introduce geometric

objects motivated by Oort–Tate theory [OT]. For more details, see [HLS, Sec. 2, 5, 7]. In what
follows, a (p− 1)-st root a′ of some a ∈ OS(S) means an element a′ ∈ OS(S) such that (a′)p−1 = a.

Definition 8.1. LetMt
1,m,G be the scheme overMt

0,m,G parametrizing (p− 1)-st roots of φi(ai),
where

φi : Det
[ Wi−1

tm+Vi−1[t]OS

→ Wi

tm+Vi[t]OS

]
∼= OS

is the trivialization of the determinant line bundle (Definition 6.1) and ai is the distinguished section
attached to this determinant line bundle. Acting on the trivial line bundle OS on the right-hand
side of φi defines a T -action on Mt

1,m,G. Note that the morphism Mt
1,m,G → Mt

0,m,G is not

T -equivariant; rather, it is equivariant with respect to (p − 1) : T → T , given by t 7→ tp−1. We
define Mt

1,m,T and Mt
1,m,B by pulling back Mt

1,m,G → Mt
0,m,G along the embeddings Mt

0,m,T ⊂
Mt

0,m,B ⊂Mt
0,m,G from Definition 6.1.

By definition, we obtain the diagram

(8.1) Mt
1,m,B

%%yy
Mt

1,m,T Mt
1,m,G

in which the arrow on the left is defined using Lemma 7.1. This diagram is compatible with Diagram
7.1.

Lemma 8.2. The two squares formed by Diagram 7.1 and Diagram 8.1

Mt
1,m,T Mt

1,m,B Mt
1,m,G

Mt
0,m,T Mt

0,m,B Mt
0,m,G.

are Cartesian.

Proof. This follows from Definition 8.1 and Lemma 7.1. □

By definition, the morphismMt
1,m,G →Mt

0,m,G is finite. By Lemma 4.3, over the generic point

Spec(Qp) the distinguished section ai is invertible, soMt
1,m,G,η →Mt

0,m,G,η is a finite étale cover
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with covering group the (p− 1)-st roots of the identity in T (Qp), which we identify with T (Fp) via
Teichmüller lifting as mentioned in §2.

The morphismMt
1,m,G,η →Mt

0,m,G,η admits a more explicit description.

Lemma 8.3. There is a canonical isomorphismMt
1,m,G,η

∼=M0,m,G,η×T such that, combined with

the canonical trivializationMt
0,m,G,η =M0,m,G,η × T from Lemma 7.4, the morphismMt

1,m,G,η →
Mt

0,m,G,η is identified with

id× (p− 1) : M0,m,G,η × T −→M0,m,G,η × T,

where id is the identity onM0,m,G,η and (p− 1) : T → T is t 7→ tp−1, as in Definition 8.1.

Proof. From the proof of Lemma 7.4, the trivialization φi defining the canonical section can1,m
sends ai to φi(ai) = 1 ∈ OS(S). Since 1 is a (p−1)-st root of itself, we obtain a sectionM0,m,G,η →
Mt

1,m,G,η, which gives the canonical isomorphism. □

Remark 8.4. There is a natural Im-action on Mt
1,m,G lifting the Im-action on Mt

0,m,G [HLS,

Lemma 7.5.5]. Using the fixed cocharacter λ, we obtain a Gm-action on Mt
1,m,G, which is again

Zariski locally linearizable sinceMt
1,m,G →Mt

0,m,G is Gm-equivariant and affine. It therefore makes

sense to consider hyperbolic localization on Mt
1,m,G, and one can prove analogues of Proposition

7.5 and Proposition 7.7 forMt
1,m,G using Lemma 8.3 (note that Gm acts only on the first factor).

Since we do not need these results, we omit the proofs.

We now introduce sheaves on M0,m,G,η and Mt
0,m,G,η. Fix a prime ℓ ̸= p. All sheaves are Qℓ-

étale sheaves. As in [HR21], for a separated scheme X of finite type over a field F whose cyclotomic

character Gal(F/F )→ Z×
ℓ , composed with Z×

ℓ ↪→ Z×
ℓ , admits a square root, we write Db

c(X,Qℓ) (or

simply Db
c(X)) for the bounded derived category of Qℓ-complexes with constructible cohomology

sheaves on X. We denote by Perv(X) the heart of the perverse t-structure.
For any Qℓ-complex A and any integer n ∈ Z, define

(8.2) A⟨n⟩ := A[n](n/2),
where (1/2) denotes the half Tate twist using the chosen square root of the cyclotomic character,
and [·] is the usual cohomological shift.

Fix µ ∈ X(T )+ dominant with respect to B. Denote by µ(t) the image of t ∈ Gm(Qp((t))) under

Gm(Qp((t)))
µ−−→ T (Qp((t))) ⊂ G(Qp((t))) −→ GrG(Qp).

By enlarging m if necessary, we may (and do) assume µ(t) lies in the image ofM0,m,G,η under the
embeddingM0,m,G,η ⊂ GrG (Lemma 4.4).

Let Oµ ⊂ M0,m,G,η be the Im,η-orbit (Definition 5.2) of µ(t), and let Oµ be its closure in

M0,m,G,η. For the inclusion j : Oµ ↪→ Oµ, define the normalized Qℓ-intersection complex by middle
extension

Aµ := j!∗Qℓ⟨dµ⟩,
where dµ = dim(Oµ). Via the closed embedding Oµ ⊂ M0,m,G,η, the complex Aµ is an Im,η-
equivariant perverse sheaf onM0,m,G,η. We may also regard Aµ as a complex on GrG via the closed
embeddingM0,m,G,η ⊂ GrG.

Remark 8.5. As a complex on GrG, Aµ coincides with the usual perverse sheaf (e.g. IC{µ} in
[HR21, (3.21)]) constructed using the Schubert stratification attached to µ. Indeed, the Im,η-orbit
Oµ, as a set, agrees with the L+G-orbit of µ(t) in GrG, where L+G(R) := G(R[[t]]) is the usual
positive loop group. Let k be a Qp-field. By the Chinese Remainder Theorem, Im,η(k) is isomorphic

to the product of GL
( V0[t]k
tm+−m−V0[t]k

)
and the standard Borel subgroup of GL

( V0[t]k
(t+wp)V0[t]k

)
[HLS,

Lemma 6.4.2]. The second factor does not change W0, and by Lemma 4.3 we only need the first
factor for Im,η-orbits. Since G is smooth over Spec(Zp), the reduction map

GL
(
k[[t]]n

)
−→ GL

( k[[t]]n

tm+−m−k[[t]]n

)
is surjective, so Im,η-orbits agree with L+G-orbits.
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To produce sheaves onMt
0,m,G,η, consider the Im-equivariant morphisms (see Remark 8.4)

Mt
1,m,G

π−−→Mt
0,m,G −→M0,m,G.

Let B+µ be the (shifted perverse) sheaf onMt
0,m,G,η obtained by pulling back Aµ along the T -torsor

Mt
0,m,G,η →M0,m,G,η. The Im,η-equivariant (shifted perverse) sheaf A+

µ,m := π∗π
∗B+µ onMt

0,m,G,η

is the correct analogue of Aµ for the Γ1(p)-level (and will make Theorem 10.12 hold). Note that
our notation differs slightly from that of [HLS], where A+

µ denotes what we write as B+µ . Also, the

subscript m is necessary here, since unlike the i w hao ri case, as explained in §8.2, the sheaf A+
µ,m

genuinely depends on m.
Working directly with A+

µ,m is technically difficult, so we pass to its monodromic pieces. We
recall some facts about monodromic sheaves in the sense of [HLS, Sec. 14]. Let

χ : T (Fp) −→ Q×
ℓ

be a general character. Since (p − 1) : T → T over Spec(Zp) is a connected finite étale cover with

covering group T (Fp), the character χ defines a rank-one Qℓ-local system on T . Following [HLS],
we denote by Fχ the rank-one local system corresponding to χ−1 (note the inverse). For each ring

k ∈ {Zp,Zp,Qp,Qp,Fp,Fp}, we write Fχk
:= Fχ,k for the base change to Tk. We suppress the index

k when clear.

Lemma 8.6. For any k as above,

(p− 1)∗Qℓ =
⊕

χ∈T (Fp)∨

Fχk
on Tk.

Proof. This is [HLS, Lemma 14.1.2(i)]. □

Lemma 8.7. For any k as above, the local system Fχk
is multiplicative:

(mk)
∗Fχk

= Fχk
⊠ Fχk

,

where mk : Tk × Tk → Tk is multiplication and ⊠ is the external product.

Proof. This is [HLS, Lemma 14.1.2(ii)]. □

We recall the definition of χ-monodromic complexes [HLS, Sec. 16.2]. Let X be a finite-type
separated k-scheme with a T -action a : T ×X → X.

Definition 8.8. A complex K ∈ Db
c(X,Qℓ) is (strongly) χ-monodromic if there exists an isomor-

phism

θ : a∗K
∼−−→ Fχ ⊠K,

such that:

(i) it is rigidified on the unit section, i.e. θ|{1}×X = idK ;
(ii) it satisfies the cocycle condition, namely the diagram

(idT × a)∗(Fχ ⊠K) Fχ ⊠ a∗K

id⊠θ≀
��(

a ◦ (idT × a)
)∗
K

(idT×a)∗(θ) ≀

OO

Fχ ⊠ Fχ ⊠K

(
a ◦ (m× id)

)∗
K

(m×id)∗(θ)

∼
// (m× id)∗(Fχ ⊠K).

(∗)

commutes, where (∗) uses Lemma 8.7.

Remark 8.9. When χ is trivial, Definition 8.8 reduces to the notion of T -equivariance. If K is
shifted perverse and k is a field, property (i) implies (ii) [HLS, Remark 16.2.2]. In this paper, K
will always be shifted perverse.
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By Lemma 8.7 and Definition 8.8, the sheaf Fχ is itself χ-monodromic on T , so Lemma 8.6

decomposes (p− 1)∗Qℓ into χ-monodromic sheaves as χ varies.
More generally, let π : Y → X be a finite étale morphism of schemes with T -actions, where X is

as above and Y has the same properties, and suppose π is equivariant in the sense that for t ∈ T
and y ∈ Y ,

(8.3) π(t · y) = tp−1 · π(y).
If moreover π is a connected finite étale cover with covering group T (Fp), then for anyK ∈ Db

c(X,Qℓ)
there is a decomposition

π∗π
∗K =

⊕
χ

Kχ,

where each Kχ is χ-monodromic; see [HLS, Sec. 16.3]. In particular, for Y = Mt
1,m,G,η, X =

Mt
0,m,G,η, and K = B+µ , all hypotheses hold, and we obtain a decomposition of A+

µ,m = π∗π
∗(B+µ )

into χ-monodromic shifted perverse sheaves:

(8.4) A+
µ,m = π∗π

∗(B+µ ) =
⊕
χ

A+
µ,m,χ.

We can describe A+
µ,m,χ concretely using Lemma 8.3.

Lemma 8.10. Via the identification Mt
0,m,G,η = M0,m,G,η × T given by can1,m in Lemma 7.4,

there is a natural isomorphism
A+

µ,m,χ = Aµ ⊠ Fχ.

Proof. By Lemma 8.3, the morphism π :Mt
1,m,G,η → Mt

0,m,G,η is id × (p − 1) :M0,m,G,η × T →
M0,m,G,η × T . Hence

π∗π
∗(B+µ ) = π∗π

∗(Aµ ⊠Qℓ) = Aµ ⊠ (p− 1)∗Qℓ
Lemma 8.6

= Aµ ⊠
(⊕

χ

Fχ

)
=
⊕
χ

Aµ ⊠ Fχ.

□

8.2. Dependence of A+
µ,m,χ on m. In this subsection, we discuss how A+

µ,m,χ onMt
0,m,G,η varies

with the truncation index m. Choose m′ = (m′+,m′−) with m′+ ≥ m+ and m′− ≤ m−.
The closed embeddings M0,m,G,η ⊂ GrG and M0,m′,G,η ⊂ GrG (Lemma 4.4) are compatible:

they factor as closed embeddingsM0,m,G,η ⊂M0,m′,G,η ⊂ GrG, where the inclusion ρ :M0,m,G,η ⊂
M0,m′,G,η is defined since any lattice bounded by m is also bounded by m′. Moreover, ρ is defined
over Zp by the same argument. By Remark 8.5, the Im,η-orbit of µ(t) agrees with the Im′,η-orbit,
so Aµ,m and Aµ,m′ are compatible in the sense that ρ∗(Aµ,m) = Aµ,m′ . Thus for the Iwahori level,
there is an unambiguous perverse sheaf Aµ compatible with different truncations, and the nearby
cycles attached to this sheaf always give the same central function in the Iwahori Hecke algebra.

In contrast, A+
µ,m,χ and A+

µ,m′,χ need not be compatible; there can be up to p−1 different sheaves.

Lemma 8.11. There exists a natural closed embedding ρt :Mt
0,m,G ⊂Mt

0,m′,G such that

Mt
0,m,G

ρt

//

��

Mt
0,m′,G

��
M0,m,G

ρ //M0,m′,G

is Cartesian.

Proof. We need an isomorphism between the determinant line bundles

Det
[ Wi−1

tm+Vi−1[t]OS

→ Wi

tm+Vi[t]OS

]
and Det

[ Wi−1

tm′+Vi−1[t]OS

→ Wi

tm′+Vi[t]OS

]
.

The second complex is the direct sum of the first and the complex[ tm+Vi−1[t]OS

tm′+Vi−1[t]OS

→ tm
+Vi[t]OS

tm′+Vi[t]OS

]
,
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whose determinant line bundle is canonically trivialized using the basis ei ∈ V [HLS, Lemma 7.2.1].
This yields the required isomorphism. □

In the proof of Lemma 8.11, we produced an isomorphism

Det
[ Wi−1

tm+Vi−1[t]OS

→ Wi

tm+Vi[t]OS

]
∼= Det

[ Wi−1

tm′+Vi−1[t]OS

→ Wi

tm′+Vi[t]OS

]
.

Let ai (resp. a′i) be the distinguished section of the complex on the left (resp. right). The isomor-

phism sends ai to wm′+−m+

p · a′i, so it does not preserve distinguished sections. Since wm′+−m+

p

has a (p − 1)-st root in Qp if and only if m′+ − m+ is divisible by p − 1, the natural embedding
Mt

1,m,G ⊂Mt
1,m′,G exists if and only if m′+ −m+ is divisible by p− 1 (see also [HLS, Sec. 9.6]).

We now compare A+
µ,m,χ and A+

µ,m′,χ. Recall thatMt
0,m,G,η andMt

0,m′,G,η admit trivializations

via the canonical sections can1,m and can1,m′ (Lemma 7.4).

Proposition 8.12. Under the identificationsMt
0,m,G,η =M0,m,G,η×T andMt

0,m′,G,η =M0,m′,G,η×
T given by can1,m and can1,m′ , the embedding ρt of Lemma 8.11 is

M0,m,G,η × T
fm,m′×idT−−−−−−−−→M0,m,G,η × T × T

ρ×mT−−−−→M0,m′,G,η × T,

where fm,m′ = (idM0,m,G,η
, wm′+−m+

p ) :M0,m,G,η → M0,m,G,η × T , and wm′+−m+

p :M0,m,G,η →
Spec(Qp)→ T is induced by (wm′+−m+

p , . . . , wm′+−m+

p ) ∈ T (Qp). Consequently,

(ρt)∗(A+
µ,m′,χ) = A+

µ,m,χ ⊗K⊗(m′+−m+)
χ ,

where Kχ is the rank-one local system on Spec(Qp) obtained by pulling back Fχ along the Qp-point
(wp, . . . , wp) ∈ T (Qp).

Proof. As noted above, the isomorphism

Det
[ Wi−1

tm+Vi−1[t]OS

→ Wi

tm+Vi[t]OS

]
∼= Det

[ Wi−1

tm′+Vi−1[t]OS

→ Wi

tm′+Vi[t]OS

]
sends ai to wm′+−m+

p · a′i. By Lemma 7.4, can1,m (resp. can1,m′) sends ai (resp. a
′
i) to the identity

section of OS , so the restriction of can1,m′ toM0,m,G,η sends ai to wm′+−m+

p .

By Lemma 8.10, A+
µ,m′,χ = Aµ ⊠Fχ onM0,m′,G,η × T and A+

µ,m,χ = Aµ ⊠Fχ onM0,m,G,η × T .
Hence

(f × idT )
∗(ρ×mT )

∗(A+
µ,m′,χ) = (f × idT )

∗(ρ×mT )
∗(Aµ ⊠ Fχ)

= (f × idT )
∗(Aµ ⊠ Fχ ⊠ Fχ)

= (Aµ ⊠ Fχ)⊗K⊗(m′+−m+)
χ

= A+
µ,m,χ ⊗K⊗(m′+−m+)

χ ,

where in the second line we used Lemma 8.7. □

Remark 8.13. By definition, the rank-one local system Kχ in Proposition 8.12 is related to the

tamely ramified extension Qp

(
w

1/(p−1)
p

)
/Qp. More precisely, Kχ corresponds to the character

β : Gal(Qp/Qp) −→ Gal
(
Qp

(
w

1
p−1
p

)
/Qp

) ∼= F×
p

∆−→ T (Fp)
χ−1

−−−−→ Q×
ℓ ,

where Gal
(
Qp

(
w

1
p−1
p

)
/Qp

) ∼= F×
p is given by σ 7→

(
σ(w

1
p−1
p )/w

1
p−1
p mod pZp

)
, and ∆ is the diagonal

map x 7→ (x, . . . , x). Note that K⊗(p−1)
χ

∼= Qℓ, since F⊗(p−1)
χ

∼= Qℓ. This implies that when
m′+ ≡ m+ (mod p− 1), (ρt)∗(A+

µ,m′,χ) = A+
µ,m,χ.

9. Central elements in Hecke algebras

Using the sheaf A+
µ,m,χ, we construct a function τssµ,m,χ in the Hecke algebra for the Γ1(p)-level.

Before doing so, we review some facts about Γ1(p)-Hecke algebras
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9.1. Definitions of Hecke algebras and their centers. For now, we work over the local field
Fp((t)), though the results in this subsection extend verbatim to any nonarchimedean local field (see
[HLS, Sec. 13] for more details). Recall that in §2 we fixed an Iwahori subgroup of G for every local
field (in particular for Fp((t))); we denote it by I. Recall also the pro-p Iwahori subgroup I+ ⊂ I
which is the pro-unipotent radical of I. The Hecke algebra H(G) consists of compactly supported,
locally constant functions (with values in Qℓ) on G(Fp((t))) (which we denote simply by G later).

The Iwahori Hecke algebra H(G, I) ⊂ H(G) is

H(G, I) := { f ∈ H(G) | f(i1gi2) = f(g) ∀ i1, i2 ∈ I, ∀ g ∈ G }.

Similarly, the pro-p Iwahori (or Γ1(p)) Hecke algebra H(G, I+) ⊂ H(G) is

H(G, I+) := { f ∈ H(G) | f(i+1 gi
+
2 ) = f(g) ∀ i+1 , i

+
2 ∈ I+, ∀ g ∈ G }.

Via reduction, I/I+ ∼= B(Fp)/U(Fp) ∼= T (Fp), so χ gives a character of I, still denoted χ. The
following variant of the Hecke algebra can be viewed as the χ-component of H(G, I+) (though,
strictly speaking, one does not obtain a direct sum decomposition). Define

H(G, I, χ) := { f ∈ H(G) | f(i1gi2) = χ−1(i1) f(g)χ
−1(i2) ∀ i1, i2 ∈ I, ∀ g ∈ G }.

Recall we used χ−1 in the definition of Fχ, and we follow the same convention here. Since I+ ⊂
ker(χ), we have H(G, I, χ) ⊂ H(G, I+). When χ is trivial, clearly H(G, I, χ) = H(G, I).

Remark 9.1. There is a natural inclusion
⊕

χH(G, I, χ) ⊂ H(G, I+), but in general equality fails

because of the bi-χ−1-equivariance requirement in the definition of H(G, I, χ) (i.e. χ−1-equivariance
on both sides).

Normalize the Haar measure dxI on G so that vol(I) = 1. With respect to this measure, convo-
lution ∗ endows all the Hecke algebras above with a multiplication. Denote their centers by Z(G),
Z(G, I), Z(G, I+), and Z(G, I, χ). The identity of H(G, I, χ) is the idempotent eχ ∈ H(G): it is
supported on I and satisfies eχ(y) = χ(y)−1 for y ∈ I. When χ is trivial, eχ is the characteristic
function of I.

A key result for the Γ1(p)-Hecke algebra ([Hai12, Lemma 10.0.1]) motivates the use of χ-monodromic
sheaves.

Lemma 9.2. There is a canonical injective homomorphism

Z(G, I+) ↪→
∏
χ

Z(G, I, χ)(9.1)

z 7−→ (z ∗ eχ)χ,

identifying Z(G, I+) with the set of tuples (zχ)χ such that for any χ, any w ∈W , and any extension

χ̃ : T (Fp((t))) → Qℓ
×

of χ, the scalar by which zχ dxI acts on iGB(χ̃)
χ coincides with the scalar by

which z
wχ dxI acts on iGB(χ̃)

wχ. Here, as above, we view χ as a character of I.

Proof. This is [Hai12, Lemma 10.0.1]. □

In particular, any z ∈ Z(G, I+) ⊂ H(G, I+) can be written uniquely as a sum z =
∑

χ zχ with

zχ := z ∗ eχ ∈ Z(G, I, χ) ⊂ H(G, I+).

9.2. Construction of central functions via nearby cycles. We recall some facts about nearby
cycles following [HR21, Sec. 6.0.1].

For a separated Fp-scheme X of finite type, let Db
c(X×sη) be the bounded derived category of Qℓ-

complexes on XFp
with constructible cohomology, equipped with a continuous action of Gal(Qp/Qp)

compatible with its action on XFp
. If f : X ↪→ Y is a closed immersion of Fp-schemes inducing an

isomorphism on reduced loci, then by topological invariance of étale cohomology [StaPro, Tag 03SI],
f induces an equivalence Db

c(X ×s η) ∼= Db
c(Y ×s η).

For a separated Zp-scheme X of finite type, the nearby cycles functor

RΨX : Db
c(Xη) −→ Db

c(X ×s η)
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is defined by RΨX(A) = ī ∗j̄∗Aη̄, where j̄ : Xη̄ ↪→ XZp
and ī : Xs̄ ↪→ XZp

are the embeddings

of geometric fibers. If f : X → Y is a morphism of Zp-schemes of finite type, there are natural
transformations

fs̄,! ◦RΨX −→ RΨY ◦ fη,!
(
resp. f∗

s̄ ◦RΨY −→ RΨX ◦ f∗
η

)
,

which are isomorphisms when f is proper (resp. smooth). Nearby cycles commute with external
products:

RΨX×ZpY
∼= RΨX ⊠RΨY .

See [SGA7, Exp.XIII] and [Il] for details.
Define

τssµ,m,χ : Mt
0,m,G(Fp) −→ Qℓ, x 7−→ (−1)dµ Trss

(
Φ
∣∣∣ (RΨMt

0,m,G
(A+

µ,m,χ)
)
x̄

)
,

where Trss denotes the semisimple trace in the sense of Rapoport (see [HN, Sec. 3.1] and [PZ,
Sec. 10.4]), dµ = dim(Oµ) is the dimension of the Im,η-orbit, and Φ ∈ WQp

is any geometric Frobe-
nius element. Later we show that A+

µ,m,χ is Im,η-equivariant (Lemma 10.1). Via the embedding

Mt
0,m,G,s ⊂ FltG (Lemma 6.2), we regard τssµ,m,χ as a function on FltG,Fp

(Fp) = G/I+, and we keep

the same notation. The Im,η-equivariance together with χ-monodromy implies τssµ,m,χ ∈ H(G, I, χ)
([HLS, Proposition 16.6.2]).

Remark 9.3. The factor (−1)dµ , together with normalizations used later, makes the equality in
Theorem 10.10 hold exactly. Without these normalizations, one only obtains equality up to a scalar
depending on µ.

Similarly, set

τssµ,m :Mt
0,m,G(Fp)→ Qℓ, x 7−→ (−1)dµ Trss

(
Φ | (RΨMt

0,m,G
(A+

µ,m)x̄)
)
,

which lies in H(G, I+). Using the decomposition

A+
µ,m =

⊕
χ∈T (Fp)∨

A+
µ,m,χ (8.4),

we obtain
τssµ,m =

∑
χ

τssµ,m,χ ∈ H(G, I+).

We expect τssµ,m ∈ Z(G, I+) (shown in Theorem 10.12). By Lemma 9.2, each τssµ,m,χ should lie in
Z(G, I, χ)—this is proved in [HLS, Sec. 16]. Note, however, that centrality of each τssµ,m,χ does not
by itself imply centrality of the sum τssµ,m; one must also verify the Weyl group compatibility stated
in Lemma 9.2. We will check these compatibilities by identifying τssµ,m,χ with (the translation by
central elements of) certain functions zssµ,χ for which the compatibility is built into the definition.

9.3. Construction of central functions via Bernstein varieties. In this section, we construct
central elements in H(G, I+) and H(G, I, χ) (see [HLS, Sec. 13] for details). Let Φt ∈ WFp((t)) be a
geometric Frobenius corresponding to t ∈ Fp((t)) via the Artin map. We work over Fp((t)), but the
construction adapts to any local field F .

Recall that the Bernstein center Z(G) is the algebra of endomorphisms of the identity functor on
smooth G(Fp((t)))-representations; equivalently, it is the algebra of regular functions on the Bernstein
variety (whose points are equivalence classes of irreducible smooth G(Fp((t)))-representations). We

specify Z ∈ Z(G) as a regular function on this variety: for irreducible π, we write Z(π) ∈ Qℓ.
Elements of Z(G) are also viewed as G-invariant, essentially compact distributions on H(G). Using
the measure dxI with vol(I) = 1, any f ∈ H(G) defines an essentially compact distribution f dxI ,
and convolution is compatible: (f ∗ g) dxI = f dxI ∗ g dxI . For Z ∈ Z(G), let 1I ∈ Z(G, I)
(resp. 1I+ ∈ Z(G, I+)) be the characteristic function of I (resp. I+). Then there exists a unique
g ∈ Z(G, I) (resp. g ∈ Z(G, I+)) with Z ∗ 1I dxI = g dxI (resp. Z ∗ 1I+ dxI = g dxI). See [Hai14,
Sec. 3] for more details on these equivalent descriptions.

We first give a construction of central elements using semisimple local Langlands parameters.

Let (r, V ) be an algebraic representation of LG := Ĝ ⋊WFp((t)) (with Ĝ over Qℓ being the dual
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group of G). There is an associated distribution ZV ∈ Z(G). For an irreducible smooth π, let
φπ :WFp((t)) → LG be the semisimple Langlands parameter of [FS]. Define

ZV (π) = Tr
(
rφπ(Φt) | V rφπ(IFp((t)))

)
,(9.2)

where IFp((t)) is the inertia group of Fp((t)). Since we take the semisimple trace (i.e. on IFp((t))-
invariants), ZV (π) does not depend on the choice of Φt. This yields a distribution in Z(G) by
[Hai14, Proposition 5.7.1, Remark 5.7.2]. For the dominant µ ∈ X∗(T )

+ fixed earlier in §8.1, let Vµ

be the corresponding highest-weight representation of LG (when G splits, W acts trivially on Vµ

and Vµ is the usual highest-weight Ĝ-module; see [Hai14, Sec. 6.1]). Set

zssµ := ZVµ ∗ 1I+ dxI ∈ Z(G, I+),

zssµ,χ := ZVµ
∗ eχ dxI ∈ Z(G, I, χ).

From

1I+ =
1

|T (Fp)|
∑
χ

eχ,

we obtain

zssµ =
1

|T (Fp)|
∑
χ

zssµ,χ.(9.3)

Remark 9.4. In [HR21, Main Theorem], an analogous construction in H(G, I) uses the Satake
parameter s(π) (for Iwahori-spherical π) in place of φπ(Φt). Since the support of ZVµ

∗ 1IdxI

lies in the Iwahori-spherical block, it suffices to specify a scalar on each such representation. The
construction agrees with ZVµ

∗ 1I dxI , as [Li] shows φπ(Φt) = s(π) and φπ(IFp((t))) = 1⋊ IFp((t)) up

to Ĝ-conjugacy.

We also give a construction via Bushnell–Kutzko types ([BK]). Since zssµ , zssµ,χ ∈ H(G, I+), their

support sits in the depth-zero block (representations with nonzero I+-fixed vectors). Thus they are
determined by their values on equivalence classes of irreducible depth-zero representations.

Let χ̃ : T (Fp((t))) → Q×
ℓ be given by χ̃(a ν(t)) = χ(ā), for a ∈ T (Fp[[t]]), ν ∈ X∗(T ), and ā the

reduction of a. Since (I, χ) is a Bushnell–Kutzko type for the cuspidal pair (T (Fp((t))), χ̃) ([Hai12,
Proposition 3.3.1]), any z ∈ Z(G, I, χ) is uniquely determined by the scalar by which it acts on
iGB(χ̃η)

χ as η ranges over unramified characters of T (Fp((t))). (This scalar is the value of z on any
irreducible subquotient of iGB(χ̃η).)

By definition, zssµ,χ is the unique element of Z(G, I, χ) such that zssµ,χ dxI acts on iGB(χ̃η)
χ by

Tr
(
rφχ̃η(Φt) | V

rφχ̃η(IFp((t)))
µ

)
,

for any unramified η. Here φχ̃η is the parameter attached to χ̃η via local class field theory, compatible
with [FS] by the compatibility with parabolic induction ([FS, Theorem I.9.6]).

Similarly, zssµ ∈ Z(G, I+) is characterized by: zssµ dxI+ acts on iGB(χ̃η)
χ by the same scalar, for

all χ, η (here dxI+ has vol(I+) = 1).
Conversely, these characterizations can serve as definitions of our central functions. Only local

class field theory is needed to define φχ̃η. One checks directly that the zssµ,χ are regular and satisfy

the compatibility in Lemma 9.2 ([HLS, Sec. 13.4]); taking average over χ then yields zssµ ∈ Z(G, I+).

When µ is minuscule, one can give explicit values of zssµ and zssµ,χ on I+–double cosets ([HLS,
Propositions 13.5.2]). For our later use, we record the special case G = T (where every cocharacter
is minuscule).

Lemma 9.5. Let G = T . Then zssµ,χ ∈ Z(G, I, χ) is the unique function supported on I µ(t) I such
that for a ∈ T (Fp[[t]]),

zssµ,χ
(
I+ aµ(t) I+

)
=

{
χ(ā)−1, if χ ◦ µ(F×

p ) = 1,

0, otherwise.

Proof. This is the case G = T of [HLS, Proposition 13.5.2(i)]. One can also check directly that this
function acts on depth-zero characters by the required scalars. □
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10. The equation between central elements

We now work toward one of our final goals: to show that the functions τssµ,m,χ and zssµ,χ, though
constructed in different ways, are actually equal (up to a translation by some specific central element
as we will explain later) in Z(G, I, χ). This gives an explicit description of τssµ,m,χ as a regular function
on the Bernstein variety.

10.1. Constant term homomorphism and geometric constant terms. For general µ, it is
difficult to verify τssµ,m,χ = zssµ,χ in Z(G, I, χ) directly, since computing their values on I+-double
cosets is hard. Instead, following the strategy of the proof of the test function conjecture for parahoric
local models in [HR21], we compare them after applying the constant term homomorphism

cGT : Z(G, I, χ) −→ Z(T, IT , χ),

where IT is the unique Iwahori subgroup T (Fp[[t]]) of T (Fp((t))). The constant term homomorphism
is induced by a surjective morphism from the depth-zero block of T to that of G ([Hai12, Sec. 5.1])
and is therefore injective on the level of coordinate rings. Since cGT is injective, it suffices to check
that

cGT (τ
ss
µ,m,χ) = cGT (z

ss
µ,χ).

There is a more concrete description of cGT via integrals ([Hai12, Sec. 5.4]):

cGT (f)(m) = δ
1/2
B (m) ·

∫
U(Fp((t)))

f(mu) du,

where δB is the modulus character of B and du is normalized so that U(Fp[[t]]) has volume 1. It
is convenient to use a normalization that matches the geometric picture. Consider the Kottwitz
homomorphism for T ,

κT : T (Fp((t)))→ T (Fp((t)))/IT ∼= X∗(T ), m 7→ νm,

and let 2ρB be the sum of positive roots determined by B. The normalized constant term is

pcGT (f)(m) := (−1)⟨2ρB ,νm⟩ cGT (f)(m),

where ⟨·, ·⟩ is the natural pairing X∗(T )×X∗(T )→ Z.
There is a geometric realization of pcGT using hyperbolic localization. Recall the diagram 5.2

attached to a Gm-equivariant morphism X/S (with Gm-action étale locally linearizable):

X±

p±

!!

q±

}}
X0 X.

Using this diagram, define functors (pull–push) as in [Ri19, Definition 2.1]:

L+
X/S := (q+)! ◦ (p+)∗, L−

X/S := (q−)∗ ◦ (p−)!.

First take X/S =M0,m,G,η/Spec(Qp) (resp. X/S =Mt
0,m,G,η/Spec(Qp)) and apply these func-

tors to Aµ (resp. A+
µ,m,χ). By [Ri19, Theorem 2.6], there is a natural transformation L−

X/S → L+
X/S

which is an isomorphism on Gm-equivariant bounded-below complexes. The next lemma shows this
applies in our situation.

Lemma 10.1. Both Aµ and A+
µ,m,χ are Im,η-equivariant and hence Gm,η-equivariant. Their nearby

cycles are Im,s̄-equivariant and hence Gm,s̄-equivariant.

Proof. We have already seen that Aµ is Im,η-equivariant (see Remark 8.5 and the preceding dis-
cussion). For A+

µ,m,χ, use the trivialization in Lemma 7.4: by Lemma 8.10, A+
µ,m,χ = Aµ ⊠ Fχ

and Im acts only on the first factor, so A+
µ,m,χ is Im,η-equivariant. Another proof is [HLS, Lemma

16.5.3], which works more generally. For nearby cycles, equivariance follows because Im is smooth
over Spec(Zp) ([HLS, Proposition 6.4.6]). □
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When working with Aµ, A+
µ,m,χ, and their nearby cycles, we may focus on L+

X/S . We normalize

L+
X/S to align with the geometric Satake correspondence. By Proposition 5.11, the “+”-diagram in

our case is

M0,m,B,η

p+

&&

q+

xx
M0,m,T,η M0,m,G,η.

The connected components of M0,m,T,η are indexed by ν ∈ X∗(T ) ∼= Zn with m− ≤ νi ≤ m+

(denoted ν ≤ m), and each component is a single (possibly infinitesimal) point (using k((t))×/k[[t]]× ∼=
Z). WriteM0,m,T,η,ν for the component indexed by ν, and letM0,m,B,η,ν := (q+)−1(M0,m,T,η,ν).

For A ∈ Db
c(M0,m,G,η), compute on each component:

L+
X/S(A)

∣∣
M0,m,T,η,ν

= (q+ν )! (p
+
ν )

∗(A) =: L+
X/S,ν(A),

where q+ν , p
+
ν are the restrictions

M0,m,B,η,ν

p+
ν

''

q+ν

ww
M0,m,T,η,ν M0,m,G,η.

Define the normalized functor

CTη :=
⊕
ν≤m

L+
X/S,ν⟨⟨2ρB , ν⟩⟩,

where the outer ⟨·⟩ is the twist on sheaves (8.2), and the inner ⟨·, ·⟩ is the pairingX∗(T )×X∗(T )→ Z.
This equals the normalization in [HR21, Definition 3.15] (there ν is unbounded and components are
grouped by ⟨2ρB , ν⟩). The functor CTη is the properly normalized one in the following sense, where
SatG (resp. SatT ) is the Satake category of G (resp. T ), and ωG (resp. ωT ) is a Tannakian fiber
functor [HR21, Definition 3.8].

Lemma 10.2. For any A ∈ SatG, we have CTη(A) ∈ SatT . Moreover, there is a commutative
diagram of neutral Tannakian categories

SatG
CTη //

ωG

��

SatT

ωT

��
RepQℓ

(LG)
res // RepQℓ

(LT ),

where res is the restriction of representations.

Proof. This is [HR21, Theorem 3.16]. □

Over the geometric special point Spec(Fp), by Proposition 5.13 and since we only need the part
of the complex on the open and closed subchemeM0,m,T,s̄, we may work with

M0,m,B,s̄

p+

&&

q+

xx
M0,m,T,s̄ M0,m,G,s̄.

Again the connected components ofM0,m,T,s̄ are indexed by ν ≤ m, so we define CTs̄ by normalizing
L+
X/S in exactly the same way. SinceMt

0,m,T is a T -torsor overM0,m,T , the connected components

of M0,m,T,η and M0,m,T,s̄ are indexed by the same set. By Propositions 7.5 and 7.7, we likewise

define CTt
η and CTt

s̄.

Following [HR21], we call CTs̄ and CTt
s̄ the geometric constant terms, as justified by the next

lemma.
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Lemma 10.3. Via the embeddings M0,m,G,s̄ ⊂ FlG (Lemma 4.6) and M0,m,T,s̄ ⊂ FlT (Lemma
4.10), the functor CTs̄ realizes pcGT on functions: for any A ∈ Db

c(M0,m,G,η×s η) whose semisimple
trace function

τssA : M0,m,G(Fp)→ Qℓ, x 7→ Trss(Φ | (Ax̄))

lies in Z(G, I), we have
pcGT (τ

ss
A ) = τssCTs̄(A),

where τssCTs̄(A) is the semisimple trace function for CTs̄(A) ∈ Db
c(M0,m,T,η ×s η). (There is no

(−1)dµ factor.)
The same holds for CTt

s̄ using the embeddings Mt
0,m,G,s̄ ⊂ FltG and Mt

0,m,T,s̄ ⊂ FltT (Lemma

6.2).

Proof. For CTs̄, interpret (p
+)∗ as restriction and (q+)! as integration of functions; then check that

the normalization in pcGT matches that of CTs̄, as in [HR21, Lemma 7.2]. The proof for CTt
s̄ is

identical. □

10.2. Proof of the main theorem. We will show that the semisimple trace function attached
to CTt

s̄

(
RΨMt

0,m,G
(A+

µ,m,χ)
)
is precisely cGT (τ

ss
µ,m,χ) (Lemma 10.9). Suppose for now this is known.

To compute cGT (τ
ss
µ,m,χ), we need an explicit description of CTt

s̄

(
RΨMt

0,m,G
(A+

µ,χ)
)
. The key input

is that geometric constant terms commute with nearby cycles on bounded below Gm-equivariant
complexes.

Lemma 10.4. There is a natural isomorphism

CTt
s̄

(
RΨMt

0,m,G
(A+

µ,m,χ)
)

= RΨMt
0,m,T

(
CTt

η(A+
µ,m,χ)

)
.

Proof. By Lemma 10.1, this is the special case of [Ri19, Th. 3.3] asserting that nearby cycles commute
with geometric constant terms for bounded below Gm-equivariant complexes. □

We now describe RΨMt
0,m,T

(
CTt

η(A+
µ,m,χ)

)
. The sheaf CTt

η(A+
µ,m,χ) onMt

0,m,T,η can be charac-

terized using the canonical section can1,m from Lemma 7.4.

Lemma 10.5. Via the identificationMt
0,m,T,η =M0,m,T,η × T , we have a natural isomorphism

CTt
η(A+

µ,m,χ) = CTη(Aµ) ⊠ Fχ.

Proof. By Lemma 8.2 we have a commutative diagram with Cartesian squares

Mt
0,m,T,η Mt

0,m,B,η Mt
0,m,G,η

M0,m,T,η M0,m,B,η M0,m,G,η

f

qt,+ pt,+

f f

q+ p+

which, after the identifications in Lemma 7.4, becomes

M0,m,T,η × T M0,m,B,η × T M0,m,G,η × T

M0,m,T,η M0,m,B,η M0,m,G,η

f

q+×idT p+×idT

f f

q+ p+

with f the projection to the first factor. By Lemma 7.4, A+
µ,m,χ = Aµ⊠Fχ onM0,m,G,η×T , hence

CT+
η (Aµ ⊠ Fχ) = (q+ × idT )! (p

+ × idT )
∗(Aµ ⊠ Fχ)

= (q+ × idT )!
(
(p+)∗Aµ ⊠ Fχ

)
= (q+)! (p

+)∗Aµ ⊠ Fχ

= CTη(Aµ) ⊠ Fχ,
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where in the third line we used the Künneth formula [LO, Theorem 11.0.14] for the derived lower
shriek functor. □

To compute nearby cycles, it is useful to have a trivialization over Spec(Zp). By proper base
change for nearby cycles and topological invariance of étale cohomology, we may work with the
reduced structure (Mt

0,m,T )red (see the discussion at the start of §9.2); we keep the same notation
for complexes on the reduced structure.

Lemma 10.6. The scheme (M0,m,T )red is a disjoint union of copies of Spec(Zp) indexed by ν ∈
X∗(T ) with ν ≤ m. Over each such copy, (Mt

0,m,T )red identifies with Spec(Zp)× T . Moreover, this
identification can be made via a canonical section can2.

Proof. For each ν with m− ≤ νi ≤ m+, set Ui := tνiZp[t]. The tuple (U1, . . . ,Un) gives a Zp-point

of (M0,m,T )red and thus a closed embedding Spec(Zp)
ν−−→ (M0,m,T )red (a section of a separated

morphism). Over a field, we used previously (when normalizing CTη) that (GrT )red is a disjoint

union of points indexed by arbitrary ν ∈ X∗(T ), so the embeddings Spec(Zp)
ν−−→ (M0,m,T )red

cover (M0,m,T )red as a disjoint union. Pulling back to Mt
0,m,T , we obtain a disjoint union of T -

torsors over Spec(Zp), all of which are trivial. Thus (Mt
0,m,T )red

∼=
⊔

ν≤m

(
Spec(Zp) × T

)
. For

later computations, we choose canonical sections can2 on each Spec(Zp), which amounts to choosing
trivializations of the determinant line bundles attached to (U1, . . . ,Un); these are provided by [HLS,
Lemma 7.2.1] using the basis ei of V, and were used in the proof of Lemma 8.11. □

The trivialization can2, defined over Spec(Zp), allows an explicit nearby cycle computation. We
must compare it on the generic fiber with can1,m.

Lemma 10.7. For any ν ∈ X∗(T ) corresponding (as in Lemma 10.6) to a copy of Spec(Zp) × T ,

the generic fiber trivializations can1,m and can2,η differ by wm+−ν
p in the sense that

Spec(Qp)× T
wm+−ν

p ×idT−−−−−−−−−→ T × T
mT−−−→ Spec(Qp)× T

identifies the two trivializations as connected components of (Mt
0,m,T,η)red. Here the left (resp. right)

Spec(Qp) × T is defined using can2,η (resp. can1,m), wm+−ν
p = (wm+−ν1

p , · · · , wm+−νn
p ) ∈ T (Qp) is

viewed as a morphism Spec(Qp)→ T , and mT is the multiplication on T .

Proof. This follows from the constructions: can1,m sends the distinguished section of the i-th de-

terminant line bundle to 1 ∈ OS (Lemma 7.4), while can2,η sends it to wm+−ν
p ∈ OS ([HLS, Lemma

7.2.1]). □

Lemma 10.8. For ν ∈ X∗(T ) as in Lemma 10.7, the restriction of CTt
η(A+

µ,m,χ) to the generic
fiber Spec(Qp)× T of the reduced component indexed by ν is(

Kν,m,χ ⊗ CTη,ν(Aµ)
)

⊠ Fχ,

where Kν,m,χ is the rank-1 local system on Spec(Qp) obtained by pulling back Fχ along Spec(Qp) ↪→
T defined by wm+−ν

p ∈ T (Qp) (as in Lemma 10.7) and CTη,ν(Aµ) is the restriction of CTη(Aµ) to
the reduced component ofM0,m,η indexed by ν.

Proof. By Lemma 10.7, we must compute (wν−m+

p × idT )
∗ m∗

T

(
CTη,ν(Aµ) ⊠ Fχ

)
; the claim then

follows from Lemma 8.7. □

We can now justify the following identification announced above.

Lemma 10.9. The semisimple trace of Frobenius function (in the sense of Lemma 10.3) attached
to CTt

s̄

(
RΨMt

0,m,G
(A+

µ,m,χ)
)
is precisely cGT (τ

ss
µ,m,χ).

Proof. Let Vµ be the µ-highest weight irreducible algebraic representation of LG. By [HR21, Corol-

lary 3.12], under geometric Satake, ωG(Aµ) = Vµ (with ωG as in Lemma 10.2). Write Qℓ,ν for the

rank-1 constant sheaf supported on the ν-component ofM0,m,T,η. Since ωT (Qℓ,ν) = ν ∈ X∗(T ) =
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X∗(T̂ ), Lemmas 10.4 and 10.2 imply that CTt
s̄

(
RΨMt

0,m,G
(A+

µ,m,χ)
)
is supported on those ν appear-

ing in Vµ|LT . By [HR21, Lemma 7.10], for such ν we have

⟨2ρB , ν⟩ ≡ dµ (mod 2).

and dW = 0 there since Schubert strata in GrT have dimension 0. Hence, by Lemma 10.3, the
function attached to CTt

s̄

(
RΨMt

0,m,G
(A+

µ,m,χ)
)
equals pcGT

(
(−1)dµτssµ,m,χ

)
= cGT (τ

ss
µ,m,χ), as the sign

(−1)⟨2ρB ,ν⟩ is canceled by (−1)dµ on the support. □

We can now prove part of our main theorem.

Theorem 10.10. If m+ is divisible by p− 1, then τssµ,m,χ = zssµ,χ.

Proof. Since cGT is injective, it suffices to show cGT (τ
ss
µ,m,χ) = cGT (z

ss
µ,χ). View both sides as functions

on FltT (Fp). For any ν ∈ X∗(T ) corresponding to a copy Spec(Zp)×T as in Lemma 10.6, we compare

the two functions on Spec(Fp)× T
ν−−→Mt

0,m,T,s ↪→ FltT .

First, cGT (τ
ss
µ,m,χ) is, by Lemma 10.9, the semisimple trace function attached to

RΨMt
0,m,T

(
CTt

η(A+
µ,m,χ)

)
.

On the generic fiber of the reduced ν-component, Lemma 10.8 gives

CTt
η(A+

µ,m,χ) = (Kν,m,χ ⊗ CTη,ν(Aµ))⊠ Fχ.

Let m(µ, ν) be the multiplicity of ν in Vµ|T̂ . By Lemma 10.2, CTη,ν(Aµ) = Qm(µ,ν)

ℓ , so

CTt
η(A+

µ,m,χ) = Km(µ,ν)
ν,m,χ ⊠ Fχ.

Since nearby cycles commute with external products ([Il]) and RΨT (Fχ) = Fχ ([HLS, Lemma
16.1.1]), we get

RΨMt
0,m,T

(
CTt

η(A+
µ,m,χ)

)
= RΨSpec(Zp)(Kν,m,χ)

m(µ,ν) ⊠ Fχ.

By definition of Kν,m,χ, the semisimple trace of RΨSpec(Zp)(Kν,m,χ) is

Trss
(
Φ | RΨSpec(Zp)(Kν,m,χ)s̄

)
=

{
1, χ◦ (ν −m+)

(
F×
p

)
= χ◦ ν

(
F×
p

)
= 1,

0, otherwise.

Since the function attached to Fχ is χ−1 ([HLS, Lemma 15.4.1]), the resulting function is m(µ, ν)
times the function in Lemma 9.5 (with µ replaced by ν).

Second, cGT (z
ss
µ,χ) is the function for T induced by the distribution ZVµ|T̂ (see (9.2)), which follows

from the description of cGT on the Bernstein side [Hai12, Sec. 5.1] and the compatibility of π 7→ φπ

with parabolic induction [FS, Th. I.9.6]. Using this and Lemma 9.5, on the ν-component cGT (z
ss
µ,χ)

equals m(µ, ν) times the same function. Hence the two functions agree. □

Recall that τssµ,m is (−1)dµ times the semisimple trace function attached to RΨMt
0,m,G

(A+
µ ). The

centrality of τssµ,m was conjectured in [HLS]; it now follows directly from Theorem 10.10 at least

when m+ is divisible by p− 1.

Corollary 10.11. If m+ is divisible by p − 1, then τssµ,m ∈ H(G, I+) lies in Z(G, I+) and τssµ,m =
|T (Fp)|zssµ .

Proof. We have

τssµ,m =
∑
χ

τssµ,m,χ =
∑
χ

zssµ,χ = |T (Fp)| · zssµ ∈ Z(G, I+).

□

We now generalize Theorem 10.10 and Corollary 10.11 to arbitrary m.
Let c ∈ Z(G)(Fp((t))) ⊂ G(Fp((t))) be central. Define a bijection

αc : H(G(Fp((t))))→ H(G(Fp((t))))
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by αc(f)(z) := f(c−1z). One checks easily that αc(f)∗αc(g) = αc2(f ∗g) for all f, g ∈ H(G(Fp((t)))),
and that αc preserves H(G(Fp((t))), I

+) (indeed, this works at any level). Hence αc induces a
bijection on Z(G(Fp((t))), I

+). For c = diag(t, . . . , t), write αt. For n ∈ Z, denote by αn
t the n-th

power of αt.

Theorem 10.12. For any m, the function τssµ,m ∈ H(G, I+) lies in the center Z(G, I+) and

τssµ,m = |T (Fp)|αm+

t

(
zssµ(m+)

)
, where µ(m+) := µ− (m+, . . . ,m+).

Proof. It suffices to prove the stated equality. Set m′ = (m′+,m′−) := (0,m− −m+). There is a
natural isomorphism

tm,m′ : M0,m,G
∼−−→M0,m′,G, W• 7−→ W ′

• := t−m+

W•.

This lifts to isomorphismsMt
0,m,G

∼=Mt
0,m′,G andMt

1,m,G
∼=Mt

1,m′,G (denoted again tm,m′). The
map tm,m′ sends Im,η-orbits onM0,m,G to Im′,η-orbits onM0,m′,G. Using the embedding in Lemma
6.2, we obtain

α−m+

t (τssµ,m) = (tm,m′)∗(τ
ss
µ,m) = τssµ(m+),m

′ = |T (Fp)|zssµ(m+)
,

with µ(m+) = µ− (m+, . . . ,m+). This implies the claim. □

Remark 10.13. A consequence of Theorem 10.12 is zssµ = α p−1
t (zssµ(p−1)

) for µ(p−1) := µ − (p −
1, . . . , p − 1). Moreover, when χ = triv is the trivial character, we have zssµ,triv = αt

(
zssµ(1),triv

)
with

µ(1) := µ− (1, . . . , 1); thus in the iwhaori case, αt produces no new central function.

11. Extension to Fq

So far we have been working with Fp-points. Let r ≥ 1 be a positive integer and q := pr. Denote
by Qq the unramified extension of Qp of degree r. Let Zq be the ring of integers of Qq and Fq the

residue field of Qq. In this section, we denote the set of characters with values in Q×
ℓ of T (Fq) (resp.

T (Fp)) by T (Fq)
∗ (resp. T (Fp)

∨). By Ir ⊂ G(Fq((t))) (resp. I+r ⊂ G(Fq((t)))) we mean the Iwahori
subgroup of G(Fq((t))) (resp. its pro-unipotent radical). We generalize results from previous sections
to Fq-points. For more details, we refer to [HLS, Sec. 16].

Recall that in §9.3 we constructed zssµ (and, for χ ∈ T (Fp)
∨, the elements zssµ,χ) for the local

field Fp((t)). Replacing Fp((t)) with Fq((t)), one similarly obtains zssµ,r ∈ Z
(
G(Fq((t))), I

+
r

)
and, for

χ′ ∈ T (Fq)
∨, the elements zssµ,r,χ′ ∈ Z

(
G(Fq((t))), Ir, χ

′).
On the other hand, there are two natural ways to generalize τssµ,m to Fq-points. First, define

τssµ,m,r,χ :Mt
0,m,G(Fq) −→ Qℓ, x 7−→ (−1)dµ Trss

(
Φr | (RΨMt

0,m,G
(A+

µ,m,χ)x̄)
)
,

where we use the same symbols as in §9.2. Similarly, define τssµ,m,r by replacing A+
µ,m,χ with

A+
µ,m in the formula above, and note that τssµ,m,r =

∑
χ∈T (Fp)∨

τssµ,m,r,χ. Viewed as an element

of H(G(Fq((t))), I
+
r ), we have τssµ,m,r,χ ∈ H(G(Fq((t))), Ir, χ

′) where χ′ = χ ◦ NFq/Fp
and NFq/Fp

:

F×
q → F×

p is the norm map. This implies that when χ′ does not factor through the norm map, the
χ′-component (in the sense of Lemma 9.2 as we will show that τssµ,m,r is central) of τssµ,m,r is zero.

Second, recall that the ramified T (Fp)-cover π :Mt
1,m,G →Mt

0,m,G was defined as the space of

(p−1)-st roots of the sections φi(αi) (Definition 8.1), and that A+
µ,χ is the χ-monodromic component

of A+
µ (Lemma 8.10). We now generalize these constructions to q. Define a T (Fq)-ramified cover

πr : Mt,r
1,m,G −→M

t
0,m,G

as the space of (q − 1)-st roots of the sections φi(αi). When r = 1, πr is just π. As before, obtain
a sheaf A+,r

µ,m := πr
∗π

r∗(B+µ ) onM+
0,m,Qp

. After base change, we get a decomposition onM+
0,m,Qq

:

A+,r
µ,m =

⊕
χ′∈T (Fq)∗

A+,r
µ,m,χ′ ,
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where each A+,r
µ,m,χ′ is χ′-monodromic. Define

τ r,ssµ,m,χ′ :Mt
0,m,G(Fq) −→ Qℓ, x 7−→ (−1)dµ Trss

(
Φr | (RΨMt

0,m,G
(A+,r

µ,m,χ′)x̄)
)
.

Similarly, define τ r,ssµ,m and note that τ r,ssµ,m =
∑

χ′∈T (Fq)∨
τ r,ssµ,m,χ′ .

The following proposition relates τssµ,m,r,χ and τ r,ssµ,m,χ′ .

Proposition 11.1. For any χ ∈ T (Fp)
∨ and χ′ = χ ◦NFq/Fp

, we have τssµ,m,r,χ = τ r,ssµ,m,χ′ .

Proof. This is part of [HLS, Proposition 16.1]. □

Theorem 10.12 generalizes to Fq-points.

Theorem 11.2. For any m, the function τ r,ssµ,m ∈ H(G(Fq((t))), I
+
r ) lies in the center and

τ r,ssµ,m = |T (Fq)|αm+

t

(
zssµ(m+),r

)
, where µ(m+) := µ− (m+, . . . ,m+).

Proof. Repeat the arguments from the previous sections with p replaced by q. □

Corollary 11.3. For any m, the function τssµ,m,r ∈ H(G(Fq((t))), I
+
r ) lies in the center.

Proof. Observing that χ′ factors through the norm map if and only if any element in its Weyl group
orbit factors through the norm map, the result follows from Proposition 11.1, Theorem 11.2, and
Lemma 9.2. □

12. The case G = GSp2g

In this section, we assume G = GSp2g. Recall that the general symplectic group is defined by

the symplectic form ⟨·, ·⟩ on Z2g with matrix(
0 J
−J 0

)
where J is the antidiagonal identity matrix. The proofs of the results in this section are essentially
the same as in the case G = GLn; rather than repeating everything, we focus only on the differences.
We retain the notation from previous sections. In particular, here G = GSp2g, T is its diagonal
torus, and B is the standard “upper” Borel subgroup. Of course, the rank of the ambient space V
is assumed to be 2g in this section.

Recall the definition ofM0,m,G for GSp2g ([HN, Definition 7] and [HLS, Definition 7.1.1]).

Definition 12.1. Let M0,m,G denote the moduli space that associates to any scheme S over
Spec(Zp) the set of chains (W0 ⊂ W1 ⊂ · · · ⊂ Wg) of OS [t]-submodules of OS [t, t

−1, (t + wp)
−1]2g

fitting into a commutative diagram with injective morphisms

tm
−V0[t]OS

// tm
−V1[t]OS

// · · · // tm
−Vg[t]OS

W0

OO

// W1

OO

// · · · // Wg

OO

tm
+V0[t]OS

OO

// tm
+V1[t]OS

OO

// · · · // tm
+Vg[t]OS

OO

where

• Wi/t
m+Vi[t]OS

⊂ tm
−Vi[t]OS

/tm
+Vi[t]OS

is locally a direct factor of rank g(m+ −m−) as
an OS-module, and

• W0 is self-dual with respect to the pairing t−m+−m−⟨·, ·⟩ and Wg is self-dual with respect

to the pairing t−m+−m−
(t+ wp)⟨·, ·⟩.
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For 0 ≤ i ≤ g, define the dual with respect to t−m+−m−⟨·, ·⟩ (similarly for t−m+−m−
(t+wp)⟨·, ·⟩)

by

W⊥
i := {v ∈ OS [t, t

−1, (t+ wp)
−1]2g | t−m+−m−

⟨v, w⟩ ∈ OS [t], ∀w ∈ Wi}.
For g ≤ i ≤ 2g, set Wi = (t + wp)

−1W⊥
2g−i. Note that Wg = (t + wp)

−1W⊥
g is assumed, so this

definition makes sense and yields a complete chain W• = (W0 ⊂ · · · ⊂ W2g = (t+ wp)
−1W0). The

following lemma is used implicitly in [HLS].

Lemma 12.2. The construction of complete chains W• = (W0 ⊂ · · · ⊂ W2g = (t + wp)
−1W0)

defines a closed embeddingM0,m,G ⊂M0,m,GL2g
.

Proof. Since ⟨·, ·⟩ is a perfect pairing, for g ≤ i ≤ 2g the quotient

Wi/t
m+

Vi[t]OS
⊂ tm

−
Vi[t]OS

/tm
+

Vi[t]OS

is locally a direct factor of rank rkR(t
m−V2g−i[t]OS

/W2g−i) = g(m+ −m−) as an OS-module, so
the embedding is well-defined. The additional requirement that W0 and Wg are self-dual is a closed
condition. □

Remark 12.3. Once a Gm-action is defined on M0,m,G similarly to before, Lemma 5.6 together
with Lemma 12.2 implies that the Gm-action on M0,m,G is Zariski locally linearizable, since the
embeddingM0,m,G ⊂M0,m,GL2g

is Gm-equivariant. Hence hyperbolic localization produces repre-
sentable objects in this section.

Let 2m := (2m+, 2m−). To define the multiplication map mult : M0,m,Gm × M0,m,Gm →
M0,2m,Gm

(induced from multiplication on Gm), we use the following equivalent definition of
M0,m,Gm

.

Lemma 12.4. The moduli space M0,m,Gm
associates to any scheme S over Spec(Zp) the set of

OS-lattices U0 ⊂ OS((t)) such that tm
+OS [[t]] ⊂ U0 ⊂ tm

−OS [[t]].

Proof. This is the equivalent definition (i) in Definition 3.1. □

Definition 12.5. The multiplication map mult :M0,m,Gm
×M0,m,Gm

→M0,2m,Gm
is defined as

follows. For any scheme S over Spec(Zp) and any U0,U ′
0 ∈M0,m,Gm

as in Lemma 12.4, set

mult(U0,U ′
0) := U0 ⊗OS [[t]] U ′

0.

This is well-defined since t2m
+OS [[t]] ⊂ U0 ⊗OS [[t]] U ′

0 ⊂ t2m
−OS [[t]] and U0 ⊗OS [[t]] U ′

0 is OS [[t]]-
projective.

Using this multiplication map, we defineM0,m,T .

Definition 12.6. LetM0,m,T be the closed subscheme ofM0,m,G2g
m

= (M0,m,Gm
)2g that associates

to any scheme S over Spec(Zp) the set of 2g-tuples (U1, . . . ,U2g) such that mult(Ui,U2g+1−i) =

tm
++m−OS [[t]] ⊂ OS((t)), where mult is defined in Definition 12.5.

Remark 12.7. Although the maximal split torus T ⊂ G is isomorphic to Gg+1
m , the schemeM0,m,T

is not defined to be isomorphic toM0,m,Gg+1
m

. In fact,M0,m,T
∼=M0,m,Gg

m
, since the first g entries

determine the whole 2g-tuple; this corresponds to the diagonal torus of Sp2g.

Lemma 12.8. The restriction of the embeddingM0,m,G2g
m
⊂M0,m,GL2g

(Definition 4.8) toM0,m,T

factors throughM0,m,G ⊂M0,m,GL2g (Lemma 12.2), and the resulting diagram

M0,m,T
//

��

M0,m,G2g
m

��
M0,m,G

//M0,m,GL2g

is Cartesian.

Proof. This follows from the fact that the restriction of the symplectic form ⟨·, ·⟩ to the (i, 2g+1− i)
components of V corresponds to multiplication of elements. □
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As in Lemma 3.3 (resp. Lemma 3.4), the R-valued points of the ind-scheme GrG (resp. FlG) can
be described by lattices L (resp. t-periodic complete lattice chains L•) in R((t))2g such that L⊥c = L

(resp. L⊥c
i = L−i for all i ∈ Z) for some c ∈ R((t))×, where L⊥c denotes the dual with respect to

c−1⟨·, ·⟩:
L⊥c := {x ∈ R((t))2g | c−1⟨x, v⟩ ∈ R[[t]] ∀ v ∈ L}.

Given a lattice L (resp. a t-periodic complete lattice chain L•) in R((t))2g, if L = L⊥c1 = L⊥c2

(resp. L
⊥c1
i = L

⊥c2
i = L−i for all i) for some c1, c2 ∈ R((t))×, then c1

c2
∈ R[[t]]×. Thus we obtain

the similitude map GrG → GrGm (resp. FlG → GrGm) by L 7→ c1 (resp. L• 7→ c1). Forgetting
self-duality gives natural embeddings GrG ⊂ GrGL2g and FlG ⊂ FlGL2g . As in Lemma 4.4 (resp.
Lemma 4.6), there is a natural closed embeddingM0,m,G,η ⊂ GrG (resp. M0,m,G,s ⊂ FlG).

Remark 12.9. Remark 12.7 and Lemma 12.8 may look surprising at first glance, but this is tied to

the choice of the pairing t−m+−m−⟨·, ·⟩ in Definition 12.1, which makesM0,m,G more “reduced” in
the following sense. For simplicity, assume m+ = −m− and work over the generic fiber. Denote by
f : GrG → GrGm the similitude map. Then the restriction f |M0,m,G,η

factors through (GrGm)red ⊂
GrGm

. Concretely, writing GrGm
as a disjoint union of infinitesimal points indexed by Z = X∗(Gm),

the image of f |M0,m,G,η
lies on the point pt0 indexed by 0 ∈ Z and in fact factors through the reduced

point Spec(Qp) = (pt0)red ⊂ pt. In this case, the image of the embeddingM0,m,G,η ⊂ GrG is exactly
the closed subscheme of GrSp2g

⊂ GrG bounded by m. For general m, the image of f |M0,m,G,η
lies

in the reduced point indexed by m+ +m−.
Although GL2 = GSp2, the schemeM0,m,GSp2

is defined differently fromM0,m,GL2 in that:

• M0,m,GSp2
lies in a single connected component indexed by m+ +m− ∈ Z; and

• M0,m,GSp2
is more “reduced” in the sense above.

Definition 12.10. Let M0,m,B denote the moduli space that associates to any scheme S over

Spec(Zp) the OS [[t]]-lattices t
m+V0[t]OS

⊂ W0 ⊂ tm
−V0[t]OS

such that

• W0/t
m+V0[t]OS

⊂ tm
−V0[t]OS

/tm
+V0[t]OS

is locally a direct factor of rank g(m+ −m−) as
an OS-module; and
• for W0,i := W0 ∩ OS(t)

i (see Remark 4.11; in particular, W0,0 = 0 and W0,n = W0), there
is an exact sequence W0,i−1 → W0,i → Qi where the first arrow is the inclusion and the
second is the projection to the i-th component, such that as the image of the projection,

the OS [t]-module tm
+OS [t] ⊂ Qi ⊂ tm

−OS [t] defines a point ofM0,m,GL1(S) (equivalently,

Qi/t
m+OS [t] ⊂ tm

−OS [t]/t
m+OS [t] is locally a direct factor as an OS-module); and

• W0 is self-dual with respect to the pairing t−m+−m−⟨·, ·⟩.

Lemma 12.11. There is a natural closed embeddingM0,m,B ⊂M0,m,BGL2g
, where BGL2g

denotes

the upper Borel of GL2g.

Proof. Compare Definition 4.12 with Definition 12.10. Fixing the rank of W0/t
m+V0[t]OS

is an
open-and-closed condition. Requiring W0 to be self-dual is a closed condition. □

Lemma 12.12. The natural embedding M0,m,B ⊂ M0,m,BGL2g
⊂ M0,m,GL2g

factors through

M0,m,G ⊂M0,m,GL2g
, and the diagram

M0,m,B
//

��

M0,m,BGL2g

��
M0,m,G

//M0,m,GL2g

is Cartesian.

Proof. Recall from Lemma 4.17 that Wi := W0 + (t + wp)
−1W0,i. We must check Wi = (t +

wp)
−1W⊥

2g−i for g ≤ i ≤ 2g.

Observe that Worth
0,i =W0,2g−i, where for W ⊂W0 we set

Worth := {w ∈ W0 | ⟨w, v⟩ = 0 ∀ v ∈ W }.
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In particular, ⟨W0,i,W0,2g−i⟩ = 0, which implies

t−m+−m−
(t+ wp)⟨Wi,W2g−i⟩ = t−m+−m−

(t+ wp)⟨W0 + (t+ wp)
−1W0,i, W0 + (t+ wp)

−1W0,2g−i⟩

⊂ t−m+−m−
(t+ wp)⟨W0, (t+ wp)

−1W0⟩
= OS [t].

Thus Wi ⊂ (t + wp)
−1W⊥

2g−i. Since tm
+V2g−i[t]OS

⊂ W2g−i ⊂ tm
−V2g−i[t]OS

, we clearly have

tm
+Vi[t]OS

⊂ (t+wp)
−1W⊥

2g−i ⊂ tm
−Vi[t]OS

. Now Wi/t
m+Vi[t]OS

⊂ (t+wp)
−1W⊥

2g−i/t
m+Vi[t]OS

are projective OS-modules of the same rank, and (t + wp)
−1W⊥

2g−i/Wi is OS-projective; hence

Wi = (t+ wp)
−1W⊥

2g−i. □

We define the morphismM0,m,B →M0,m,T as the morphism induced by the next lemma.

Lemma 12.13. The restriction of the morphismM0,m,BGL2g
→M0,m,G2g

m
toM0,m,B ⊂M0,m,BGL2g

factors throughM0,m,T ⊂M0,m,G2g
m
.

Proof. We must check mult(Qi,Q2g+1−i) = tm
++m−OS [[t]]. By Lemma 12.12, Worth

0,i =W0,2g−i, so

the pairing t−m+−m−⟨·, ·⟩ induces a pairing onW0,i/W0,i−1 = Qi andW0,2g+1−i/W0,2g−i = Q2g+1−i

given by t−m+−m−
times multiplication of elements. Passing to the induced pairing on the quotients

Qi/t
m+

OS [t] ⊂ tm
−
OS [t]/t

m+

OS [t] and Q2g+1−i/t
m+

OS [t] ⊂ tm
−
OS [t]/t

m+

OS [t],

we obtain
(Qi/t

m+

OS [t])
orth = Q2g+1−i/t

m+

OS [t],

where orth is defined using the induced pairing on tm
−OS [t]/t

m+OS [t]. This implies

mult(Qi,Q2g+1−i) = tm
++m−

OS [[t]].

□

To define T -torsors, recall the following lemma.

Lemma 12.14. For any W• ∈M0,m,G(S), there is a canonical isomorphism

(12.1) Det
[ Wi−1

tm+Vi−1[t]
→ Wi

tm+Vi[t]

]
⊗OS

Det
[ W2g−i

tm+V2g−i[t]
→ W2g+1−i

tm+V2g+1−i[t]

]
∼= OS

sending the distinguished section ai ⊗ a2g+1−i on the left to the section wm+−m−

p on the right. This
family of isomorphisms is symmetric in the sense of [HLS, Sec.4.1].

Proof. This is [HLS, Lemma 7.2.3]. □

Definition 12.15. LetMt
0,m,G be the moduli space overM0,m,G parametrizing isomorphisms

φi : L′
i := Det

[ Wi−1

tm+Vi−1[t]OS

→ Wi

tm+Vi[t]OS

]
∼−−→ OS

such that there exists a unit u ∈ O×
M0,m,G

with the property that, for all i, the diagram

(12.2) L′
i ⊗ L′

2g+1−i
can
∼
//

φi⊗φ2g+1−i ≀
��

OM0,m

×u≀
��

OM0,m ⊗OM0,m

mult
∼
// OM0,m

commutes, where mult : OM0,m ⊗ OM0,m → OM0,m is multiplication and can is the symmetric
family of Lemma 12.14. Since can is symmetric,Mt

0,m,G is a T -torsor overM0,m,G.

DefineMt
0,m,T andMt

0,m,B by pulling back the T -torsorMt
0,m,G along the embeddingsM0,m,T ⊂

M0,m,B ⊂ M0,m,G from Lemma 4.17, Lemma 12.8, Lemma 12.12 and thus obtaining embeddings
Mt

0,m,T ⊂Mt
0,m,B ⊂Mt

0,m,G.

As in the GLn case (Lemma 7.4), these T -torsors are trivial on the generic fiber.
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Lemma 12.16. The T -torsor Mt
0,m,G,η → M0,m,G,η is trivial. Moreover, there is an Im,η-

equivariant, hence Gm,η-equivariant, canonical section can1,m trivializing this T -torsor. The anal-
ogous statements hold with G replaced by T or B. For the definition of Im in this case, see [HLS,
Definition 6.4.1].

Proof. The proof is identical to that of Lemma 7.4. Note that the unit u in Definition 12.15 can be

taken to be wm−−m+

p , which is invertible on the generic fiber. □

With these ingredients in place, all definitions and results from previous sections generalize to
the case G = GSp2g.
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Norm. Sup., 4e serie, t. 45 (2012), 681-718. 3, 4, 30, 32, 33, 37
[Hai14] T.Haines: The stable Bernstein center and test functions for Shimura varieties, In Automorphic Forms

and Galois Representations vol.2, edited by F. Diamond, P. Kassaei and M. Kim, 118-186. London Math.

Soc. Lecture Notes, Series 415. Cambridge University Press, 2014. 1, 2, 3, 31, 32
[Hai15] T.Haines: On Satake parameters for representations with parahoric fixed vectors, IMRN (2015), no., 20,

10367-10398.

[Hai25+] T.Haines: Beijing Lectures on the Geometric Satake Equivalence, in preparation. 9
[HLS] T.Haines, Q. Li, B. Stroch: Local models and nearby cycles for Γ1(p)-level structure, in preparation. 1, 2,

3, 4, 7, 8, 10, 11, 12, 13, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 42, 43
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[Ve] J. -L.Verdier: Spécialisation de faisceaux et monodromie modérée, Analyse et topologie sur les espaces

singuliers, II, III (Luminy, 1981), pp. 332-364, Asterisque, 101-102, Societe Mathematique de France,
(1983). 4

[Zhu16] X. Zhu, An introduction to affine Grassmannians and the geometric Satake equivalence, preprint (2016)
arXiv:1603.05593v2. 2, 3, 9, 12, 15, 16

[Zhu25] X. Zhu: Tame categorical local Langlands correspondence, preprint (2025) arXiv:2504.07482. 4

Department of Mathematics, University of Maryland, College Park, MD 20742-4015, DC, USA

Email address: mathlqh@umd.edu


	1. Introduction
	2. Notation
	3. Affine grassmannian and (enhanced) affine flag variety
	4. Truncated deformations for the Iwahori level
	5. The Gm-action and hyperbolic localization for the Iwahori level
	6. Truncated deformations for the 1(p)-level
	7. The Gm-action and hyperbolic localization for the 1(p)-level
	8. Sheaves on M0,m,G, and M0,m,G,t
	9. Central elements in Hecke algebras
	10. The equation between central elements
	11. Extension to Fq
	12. The case G = GSp2g
	References

